Initial Design of High Speed Landing Craft PACSCAT

Initial Design of High Speed Landing Craft PACSCAT

论文摘要

登陆艇(LCU)专门用于将重型车辆,如作战坦克或军车等从主力平台(capital platform)运送到海岸上。主力平台(capital platform)北约内部称作两栖登陆舰(Landing Platform Docks(LPD))能使登陆艇从其尾部的井式甲板驶入或驶出。目前的登陆艇受性能不足的约束,已经严重制约了其两栖作业的功能。本论文的主要目的是开发一种新型的高速登陆艇的初步设计。提出了基于英国皇家海军的创新方案示范船(ISDC),即局部气垫支撑双体船(PACSCAT)的新型高速登陆艇的初步设计。局部气垫支撑双体船(PACSCAT)使用连接桥将两个轻型片体连接起来,并且该连接桥也可用作货物甲板。局部气垫支撑双体船(PACSCAT)是两种概念的融合体:海面效应船(SES)与气垫船(ACV)。本论文的主要研究内容如下:第一章,首先对船舶初步设计中用到的方法进行了综述,其次对本论文所要研究范围与内容进行了讨论,并从设计的特殊要求角度出发阐述了该研究的重要性。第二章,描述了传统登陆艇的分类和发展,并对目前现代登陆艇所使用的最先进技术:微泡技术,水翼船概念以及气垫船进行了重点研究,通过对比分析为本设计选择了合适的方案。第三章,在对一系列现代登陆艇参数分析的结果上,确定了本登陆艇的主尺度并绘制了其型线图;使用Maxsurf完成了本艇的三维模型及静水力计算,最后用Pro-Engineering solid modeling软件完成该艇的上层建筑设计。第四章,研究了局部气垫支撑双体船(PACSCAT)阻力计算的方法,并对阻力中不同成分进行了详细分析研究。第五章,研究了本登陆艇的动力与推进系统,最后设计了局部抬升本艇从而减少其吃水的气垫系统。第六章,参照德国LR船级社《特殊用途船入级规范》中有关高速双体船的规范要求,确定了本艇船体构件尺寸的选取。第七章,将计算得到构件尺寸结果,在ANSYS软件(一个十分流行的有限云分析系统)中进行了更详细的有限元验证分析,从而保证了该设计的安全性与可靠性。创新方案示范船一一局部气垫支撑双体船(PACSCAT ISDC)是具有一对片体的气垫船。空气从两片体间吹进以提供升力来减少拖曳摩擦力,提高船速且具有更大的抢滩能力。不同于海面效应船(SES),局部气垫支撑双体船(PACSCAT)因其较宽的船体而使其拥有更高的负载能力。

论文目录

  • 摘要
  • ABSTRACT
  • ACKNOWLEDGMENTS
  • CHAPTER 1 INTRODUCTION
  • 1.1 Purpose and Significance of Current Research Work
  • 1.2 Method
  • 1.3 Vision
  • 1.3.1 Technical Vision
  • 1.3.2 Tactical Vision
  • 1.4 Specification of Requirements
  • 1.4.1 Cargo Vehicles
  • 1.4.2 Landing Platform Dock,LPD
  • 1.5 Conclusion
  • 1.6 Chapter Summary
  • CHAPTER 2. CONCEPT
  • 2.1 Classification of Ship Borne Landing Craft
  • 2.2 Development of Ship Borne Landing Craft
  • 2.2.1 Conventional Flat-Bottomed Barge-type Landing Craft
  • 2.2.2 Landing Craft Air Cushion(LCAC)
  • 2.2.3 Catamaran Concept of Landing Craft
  • 2.2.4 Surface Effect Ship(SES)Type Landing Craft
  • 2.2.5 Conclusion(Selection of Hull form)
  • 2.3 Modern Technologies Available With High Speed Crafts
  • 2.3.1 Micro Bubble Technology
  • 2.3.2 Under Water Lifting Body(Hydro foils and Aft Cross foils Concept)
  • 2.3.3 Partial Air Cushion Supported Catamaran(PACSCAT)
  • 2.3.4 Conclusion(Selection of Innovative technology)
  • 2.3.5 The Concept of High Speed Landing Craft(PACSCAT)
  • 2.4 Chapter Summary
  • CHAPTER 3. INITIAL DESIGN AND MAXSURF MODELING
  • 3.1 Parametric Analysis
  • 3.1.1 Selection of Principle Dimensions
  • 3.1.2 Selection of Demi Hull Dimensions
  • 3.2 General Arrangement
  • 3.3 Introduction to 3D Modeling in Naval Architecture
  • 3.4 Maxsurf
  • 3.5 PACSCAT Modeling in Maxsurf
  • 3.5.1 Maxsurf Solid Hull Modeling
  • 3.5.2 Maxsurf Hull Model Lines Plan
  • 3.5.3 Curve of Cross Sectional Areas
  • 3.6 3D Modeling of PACSCAT by Pro-Engineering
  • 3.7 Chapter Summary
  • CHAPTER 4. RESISTANCE CALCULATIONS OF PACSCAT
  • 4.1 Wave Making Resistance,
  • 4.2 Aerodynamic Profile Resistance
  • 4.3 Skirt Drag
  • 4.4 Sidewalls Friction Resistance
  • 4.5 Total Resistance of PACSCAT
  • 4.6 Chapter Summary
  • CHAPTER 5. POWERING,PROPULSION AND AIR CUSHION SYSTEM
  • 5.1 Selection of Main Engine
  • 5.1.1 Fuel Consumption
  • 5.2 Selection of Water Jet Unit
  • 5.2.1 Why MJP Water Jet?
  • 5.3 Air Cushion System Design
  • 5.3.1 Introduction
  • 5.3.2 Cushion Pressure
  • 5.3.3 Air Flow Rate
  • 5.3.4 Lift Power
  • 5.3.5 Selection of Fan Type
  • 5.3.6 Lift Engines
  • 5.4 Chapter Summary
  • CHAPTER 6. HULL STRUCTURAL DESIGN
  • 6.1 Material Selection
  • 6.1.1 Why Built PACSCAT with Aluminium?
  • 6.1.2 Yield Strength
  • 6.1.3 Specific Aluminium Alloy Selection
  • 6.1.3.1 5 086 Aluminium Alloy
  • 6.2 Class Notations of PACSCAT
  • 6.3 Motion Response
  • 6.3.1 Relative vertical motion
  • 6.3.2 Vertical acceleration
  • 6.4 Loads on Shell Envelope
  • 6.4.1 Hydrostatic Pressure on the shell plating
  • 6.4.2 Hydrodynamic wave pressure
  • 6.4.3 Weather Deck Pressure
  • 6.4.4 Pressure on Interior Decks
  • 6.4.5 Combined pressure distribution
  • 6.5 Impact Loads
  • 6.5.1 Bottom shell impact pressure due to slamming
  • 6.5.2 Side shell impact pressure due to slamming
  • 6.5.3 Forebody impact pressure
  • 6.5.4 Conclusion
  • 6.6 Local Design Criteria for Non-Displacement Mode
  • 6.7 Hull envelope design criteria(Hull structures)
  • 6.7.1 Bottom Shell
  • 6.7.2 Outboard side shell
  • 6.7.3 Inboard side shell
  • 6.7.4 Wet Deck
  • 6.8 Components
  • 6.8.1 Weather Deck
  • 6.8.2 Coachroof Deck
  • 6.8.3 Interior Deck
  • 6.8.4 Inner Bottom
  • 6.8.5 Watertight and Deep Tank Bulkheads
  • 6.9 Additional Effective Pressures
  • 6.9.1 Bottom longitudinal amidships additional effective pressure
  • 6.9.2 Bottom plating amidships additional effective pressure
  • 6.10 Global Load and Design Criteria
  • 6.10.1 Vertical wave bending moments and associated shear forces
  • 6.10.2 Wave Shear Force
  • 6.10.3 Dynamic Bending Moments
  • 6.10.4 Dynamic Shear Force
  • 6.11 Global Load and Design Criteria
  • 6.11.1 Transverse Bending Moment
  • 6.11.2 Twin Hull Torsional Moment
  • 6.11.3 Vertical Shear Force
  • 6.12 Design criteria and load combinations
  • 6.12.1 Rule bending moment
  • 6.12.2 Rule Shear Forces
  • 6.13 Scantling Determination for Multi-Hull Craft
  • 6.13.1 Minimum Plating Thickness Requirements
  • 6.13.2 Shell Envelope Plating
  • 6.13.2.1 Keel Plates
  • 6.13.2.2 General Plating
  • 6.13.3 Single Bottom Structure and Appendages
  • 6.13.3.1 Keel
  • 6.13.3.2 Centre girder
  • 6.13.3.3 Side girders
  • 6.13.3.4 Floors General
  • 6.13.3.5 Floors in machinery spaces
  • 6.13.3.6 Forefoot and stem
  • 6.13.4 Shell envelope framing(Stiffening General)
  • 6.13.5 Stiffener Profiling
  • 6.13.6 Watertight Bulkheads and Deep Tank Plating
  • 6.13.7 Deck structures
  • 6.14 Hull Girder Strength
  • 6.14.1 Hull Longitudinal Bending Strength
  • 6.14.2 Hull Shear Strength
  • 6.14.3 Strength of cross-deck structures
  • 6.14.4 Conclusion
  • CHAPTER 7. DIRECT CALCULATIONS
  • 7.1 Finite Element Analysis
  • 7.1.1 Model Development Approach
  • 7.1.1.1 Non-Parametric Model Generation
  • 7.1.1.2 Parametric Model generation
  • 7.1.1.3 Current Model Generation Approach-GUI Approach
  • 7.1.2 3D Global Finite Element Model Development
  • 7.1.3 Boundary Conditions
  • .7.1.3.1 Spring Constraints Evaluation
  • 7.1.4 Extent of FEM Modeling
  • 7.1.5 Analysis Phase (Load Cases Applications)
  • 7.1.5.1 Moment Application (Load Case 1)
  • 7.1.5.2Sea Pressure Application @ T= 0.8m (Load Case 2)
  • 7.1.5.3Sea Pressure Application @ T= 1.5m (Load Case 3)
  • 7.1.5.4 Only Battle Tank (Load Case 4)
  • 7.1.5.5Moments and Tank (Load Case 5)
  • 7.1.5.6Full Load Condition (Load Case 6)
  • 7.1.6 Analysis and Results
  • 7.1.6.1 Hogging Moment Condition (Load Case 1)
  • 7.1.6.2 Sagging Moment Condition (Load Case 1)
  • 7.1.6.3 Torsional Moment Application (Load Case 1)
  • 7.1.6.4Sea Pressure Application @ T=0.8m (Load Case 2)
  • 7.1.6.5Sea Pressure Application @ T=1.5m (Load Case 3)
  • 7.1.6.6 Only Battle Tank Loading (Load Case 4)
  • 7.1.6.7Moment and Tank Combine Loading (Load Case 5)
  • 7.1.6.8Full Load Condition (Load Case 6)
  • 7.1.7 Theoretical Validation
  • 7.1.7.1 Comparison
  • 7.1.7.2 Conclusion
  • CONCLUDING REMARKS AND FUTURE RECOMMENDATIONS
  • Concluding Remarks
  • Recommendations for Future Work
  • REFERENCES
  • 相关论文文献

    • [1].氢能源双体船[J]. 汽车知识 2020(03)
    • [2].蛇宴[J]. 意林(原创版) 2017(08)
    • [3].神奇的全太阳能动力双体船[J]. 大江周刊(生活) 2011(09)
    • [4].一种水车式湖面垃圾清理及水体增氧双体船结构设计[J]. 机械工程师 2020(09)
    • [5].非对称双体船布局优选研究[J]. 舰船科学技术 2018(11)
    • [6].不同附体对穿浪双体船阻力和耐波性影响研究[J]. 舰船科学技术 2015(07)
    • [7].穿浪双体船剩余阻力影响因素分析及总阻力预报方法[J]. 船舶力学 2011(Z1)
    • [8].穿浪双体船附连水质量计算讨论[J]. 船海工程 2010(01)
    • [9].计及航行纵倾变化的穿浪双体船阻力预报新方法研究[J]. 海军工程大学学报 2008(05)
    • [10].适应近海落水人员快速救援的双体船设计与分析[J]. 造船技术 2020(02)
    • [11].截流板/尾楔对加装T型水翼的双体船阻力影响的数值计算[J]. 广东造船 2019(02)
    • [12].基于阻力分析的穿浪双体船船型设计及优化[J]. 舰船科学技术 2019(13)
    • [13].浮油回收双体船结构强度评估方法[J]. 舰船科学技术 2018(19)
    • [14].穿浪双体船迎浪纵向运动和阻力增值数值分析[J]. 海军工程大学学报 2016(01)
    • [15].穿浪双体船纵向运动滑模控制[J]. 计算技术与自动化 2014(02)
    • [16].波浪对穿浪双体船摇荡运动的影响[J]. 舰船科学技术 2012(04)
    • [17].高速轻型穿浪双体船纵向运动改善措施研究[J]. 中国舰船研究 2012(02)
    • [18].三维流体动力方法计算穿浪双体船的船体响应[J]. 中国舰船研究 2011(02)
    • [19].我国穿浪双体船正朝大型化实用化发展[J]. 交通与运输 2010(03)
    • [20].穿浪双体船的阻力分析与船型优化[J]. 武汉船舶职业技术学院学报 2019(01)
    • [21].采用自控T型翼和尾板改善穿浪双体船波浪中运动研究[J]. 中国水运(下半月) 2015(09)
    • [22].穿浪双体船纵向运动的理论预报研究[J]. 中国水运(下半月) 2013(02)
    • [23].穿浪双体船的阻力性能分析[J]. 中国水运(下半月) 2013(02)
    • [24].穿浪双体船总体设计载荷研究[J]. 船舶力学 2010(Z1)
    • [25].高速轻型穿浪双体船船型及性能试验研究[J]. 中国造船 2008(03)
    • [26].水翼双体船纵向姿态鲁棒估计的仿真实验研究[J]. 实验室科学 2018(01)
    • [27].局部气垫双体船阻力性能及片体间距优化研究[J]. 武汉理工大学学报(交通科学与工程版) 2014(06)
    • [28].穿浪双体船纵向运动控制系统试验水池样机方案设计[J]. 船电技术 2014(06)
    • [29].猎豹双体船交付碧桂园[J]. 珠江水运 2013(16)
    • [30].基于模糊神经网络的穿浪双体船摇荡运动预报[J]. 广州航海高等专科学校学报 2011(04)

    标签:;  ;  

    Initial Design of High Speed Landing Craft PACSCAT
    下载Doc文档

    猜你喜欢