本文主要研究内容
作者(2019)在《Effect of geometrical configurations on alkaline air-breathing membraneless microfluidic fuel cells with cylinder anodes》一文中研究指出:Membraneless microfluidic fuel cells(MMFCs) outperform traditional membrane-based micro-fuel cells in membraneless architecture and high surface-to-volume ratio and facile integration, but still need substantial improvement in performance. The fundamental challenges are dictated by multiphysics regarding cell configurations: the interaction of fluid flow, mass transport and electrochemical reactions. We present a numerical research that investigates the effect of geometrical configurations(rod arrangement, cell length, rod diameter and spacer configuration) on the fuel transport and performance of an alkaline MMFC with cylinder anodes. Modeling results suggest that the staggered rod arrangement outperforms the in-line case by 10.1% at 50 μL min–1. Cell power output and power density vary nearly linearly with the cell length. In the case with 0.7 mm anodes and 0.3 mm spacers, the increased flow resistance at anode region drives the fuel to intrude into the spacer zone, leading to fuel transport limitation at downstream. The feasibility of non-spacer configuration is demonstrated, and the power density is 93.7% higher than the baseline due to reduced cell volume and enhanced fuel transport. In addition, horizontal extension of the anode array is found to be more favorable for scale-up, the maximum power density of 181.9 mW cm–3 is predicted. This study provides insight into the fundamental, and offers guidance to improve the cell design for promoting performance and facilitating system integration.
Abstract
Membraneless microfluidic fuel cells(MMFCs) outperform traditional membrane-based micro-fuel cells in membraneless architecture and high surface-to-volume ratio and facile integration, but still need substantial improvement in performance. The fundamental challenges are dictated by multiphysics regarding cell configurations: the interaction of fluid flow, mass transport and electrochemical reactions. We present a numerical research that investigates the effect of geometrical configurations(rod arrangement, cell length, rod diameter and spacer configuration) on the fuel transport and performance of an alkaline MMFC with cylinder anodes. Modeling results suggest that the staggered rod arrangement outperforms the in-line case by 10.1% at 50 μL min–1. Cell power output and power density vary nearly linearly with the cell length. In the case with 0.7 mm anodes and 0.3 mm spacers, the increased flow resistance at anode region drives the fuel to intrude into the spacer zone, leading to fuel transport limitation at downstream. The feasibility of non-spacer configuration is demonstrated, and the power density is 93.7% higher than the baseline due to reduced cell volume and enhanced fuel transport. In addition, horizontal extension of the anode array is found to be more favorable for scale-up, the maximum power density of 181.9 mW cm–3 is predicted. This study provides insight into the fundamental, and offers guidance to improve the cell design for promoting performance and facilitating system integration.
论文参考文献
论文详细介绍
论文作者分别是来自Science China(Technological Sciences)的,发表于刊物Science China(Technological Sciences)2019年03期论文,是一篇关于,Science China(Technological Sciences)2019年03期论文的文章。本文可供学术参考使用,各位学者可以免费参考阅读下载,文章观点不代表本站观点,资料来自Science China(Technological Sciences)2019年03期论文网站,若本站收录的文献无意侵犯了您的著作版权,请联系我们删除。