含磷聚硅氧烷的合成及其在PC/ABS中的应用

含磷聚硅氧烷的合成及其在PC/ABS中的应用

论文摘要

目前阻燃领域绿色环保的呼声日益高涨、各类阻燃法规日益严苛,特别是欧盟两项指令“废弃电子电器设备指令(West Electrical and Equipment Directive,WEEE)(2003年3月生效)及“电子电器设备中禁用有害物质指令(Restriction of Hazardous Substances Directive, RoHS)的颁布更加促使了无卤阻燃剂的研发。PC/ABS是工程塑料中产量最大的合金,具有优异的综合性能,广泛地应用于各类电子电器产品中,但是PC/ABS易燃,在很多应用中受到了一定的限制,因此阻燃PC/ABS的开发是较活跃的领域之一。无卤阻燃PC/ABS中使用的比较多的阻燃剂是含磷阻燃剂,常用的主要有磷酸三苯酯(TPP)、间苯二酚二缩合磷酸酯(RDP)和双酚磷系阻燃剂(BAPP)。含磷阻燃剂作用机理是在燃烧过程中促进聚合物成炭;有机硅化合物燃烧时形成的残炭具有高温热稳定性,能够有效地提高炭层的高温稳定性,在PC中具有一定的阻燃作用。在这基础上,本论文将有机硅元素和磷元素成功地结合到同一大分子中,合成了两类含磷聚硅氧烷阻燃剂,对其结构和性能进行了表征;研究了合成出的阻燃剂在PC/ABS中的应用以及阻燃剂和纳米蒙脱土在PC/ABS中的协同阻燃作用;通过对降解动力学以及降解产物的研究初步分析了阻燃剂的阻燃机理。1.含磷聚硅氧烷阻燃剂的合成及其结构表征首先通过9,10-二氢-9-氧杂-10-磷杂菲-10-氧化物(DOPO)与乙烯基二甲氧基硅烷(VMDMS)的加成反应生成一种含磷硅氧烷,经过水解与脱水,得到中间体低聚含磷硅醇(DOPO-VMDMS),DOPO-VMDMS分别与氨基硅氧烷或二羟基硅烷进行共聚,合成出两类含磷聚硅氧烷阻燃剂(DVN和DVP)。用傅立叶变换红外光谱(FTIR)、核磁共振(NMR)氢谱、磷谱、凝胶色谱(GPC)、元素分析等对反应的中间产物以及最终产物进行结构分析表征;通过氮气和空气中的热重分析(TGA)对DVN和DVP的热性能进行了研究,结果表明DVN在氮气和空气中的残炭量都超过30wt.%,而DVP在空气中的残炭量也在20wt.%左右,同时发现DVN和DVP在空气中的成炭性均好于其自身在氮气中的成炭性,说明氧气的存在有利于促进聚硅氧烷成炭。2.含磷聚硅氧烷在PC/ABS中的应用利用自合成的含磷聚硅氧烷DVN和DVP对PC/ABS合金进行阻燃改性,采用直接熔融共混的方法得到无卤阻燃PC/ABS材料,通过氧指数(LOI)、垂直燃烧(VB)以及锥形量热仪(Cone)研究了阻燃剂对PC/ABS阻燃性能的影响,通过TGA研究了阻燃剂对PC/ABS热性能的影响,通过SEM研究了阻燃前后PC/ABS燃烧后残炭结构的区别,阻燃剂对PC/ABS力学性能的影响则通过拉伸和冲击测试来研究,通过EDS表征了P、Si元素在PC/ABS中的分布,从而推测阻燃剂在体系中的分散情况。研究表明:DVN或DVP的加入都可以显著地降低材料在燃烧过程中的热释放速率、总放热量、有效燃烧热、质量损失速率,提高燃烧成炭率以及极限氧指数值,但是DVN或DVP阻燃PC/ABS的点燃时间缩短了。TGA结果表明,相对PC/ABS来说,DVN或DVP阻燃PC/ABS的初始分解温度降低了;但是在氮气和空气中800℃下的残炭量都有所提高,并且DVP促进PC/ABS成炭的效果更为明显;阻燃PC/ABS的热降解速率要低于PC/ABS。在DVP添加量为10-15%时该阻燃体系能够通过垂直燃烧实验。与DVN阻燃PC/ABS相比,DVP阻燃PC/ABS在力学性能有所提高,但是相对于未阻燃的PC/ABS来说,还是下降较多。SEM结果和EDS结果表明,DVP在PC/ABS中的分散比较均匀。残炭的形貌研究表明,不论是DVN还是DVP阻燃的PC/ABS燃烧后形成的炭层都是表面致密、内部疏松的结构,该结构有利于阻止基体和外界进行能量和物质的交换,从而发挥较好的阻燃作用。3. DVP与OMT在PC/ABS中的协同阻燃作用研究了含磷聚硅氧烷DVP与有机纳米蒙脱土的在PC/ABS合金中的协同阻燃作用。用透射电子显微镜(TEM)和X射线衍射(XRD)考察了OMT在PC/ABS以及PC/ABS/DVP中的分散情况,结果表明蒙脱土在PC/ABS中呈插层型结构,在PC/ABS/DVP中呈插层/剥离型结构。由于DVP的存在,使得体系加工的粘度下降,剪切更为充分,从而使蒙脱土在PC/ABS中分散更为均匀。在锥形量热测试中发现,OMT的加入能够使得PC/ABS以及PC/ABS/DVP的热释放速率稍有降低,且大大延长了PC/ABS以及PC/ABS/DVP的点燃时间。PC/ABS/OMT插层结构和PC/ABS/DVP/OMT的插层/剥离型结构限制了分子链的热运动,且由于片层的阻隔效果有效地提高了材料的热稳定性,阻燃性能以及成炭性能。4.各阻燃PC/ABS体系的热降解过程的研究采用Flynn-Wall-Ozawa法研究了阻燃PC/ABS的降解动力学,通过TG-FTIR研究了在空气中DVP和DVP阻燃PC/ABS降解气相产物的结构,用FTIR和X光电子能谱(XPS)研究了PC/ABS和阻燃PC/ABS燃烧后残炭的化学结构,进而探讨阻燃剂阻燃机理。降解动力学研究结果表明,阻燃剂(DVN、DVP以及OMT)的加入降低了PC/ABS在降解初期的降解活化能;随着降解的进行,炭层逐渐形成,阻燃PC/ABS在高降解转化率时的降解活化能要比PC/ABS高,表明了阻燃PC/ABS形成的炭层的热稳定性高于PC/ABS;TG-FTIR和FTIR结果表明阻燃剂DVP在降解过程中确实形成了Si-O-Si交联结构;XPS的结果表明了PC/ABS/DVN在燃烧后Si和P元素有明显的富集现象,且结合能的结果证实了燃烧的残炭中磷的含氧酸以及P-Si键的存在,说明了Si和P存在协同成炭作用。

论文目录

  • 摘要
  • ABSTRACT
  • 第一章 绪论
  • 1.1 阻燃剂及阻燃机理
  • 1.1.1 阻燃剂概述
  • 1.1.2 含卤阻燃剂
  • 1.1.3 无机阻燃剂
  • 1.1.4 含磷阻燃剂
  • 1.1.5 含氮阻燃剂
  • 1.1.6 含硅阻燃剂
  • 1.2 PC/ABS 合金及其阻燃研究现状
  • 1.2.1 PC 阻燃
  • 1.2.1.1 PC 树脂概况
  • 1.2.1.2 PC 的热解过程
  • 1.2.1.3 PC 阻燃的现状和研究进展
  • 1.2.2 ABS 阻燃
  • 1.2.2.1 ABS 概况
  • 1.2.2.2 ABS 燃烧机理
  • 1.2.2.3 ABS 阻燃的现状和研究进展
  • 1.2.3 PC/ABS 合金阻燃的现状和研究进展
  • 1.3 聚合物燃烧性能试验方法
  • 1.3.1 引言
  • 1.3.2 氧指数法
  • 1.3.3 垂直燃烧法
  • 1.3.4 锥形量热仪法
  • 1.4 课题的提出及研究内容
  • 1.4.1 课题的提出
  • 1.4.2 研究内容
  • 1.4.3 创新点
  • 参考文献
  • 第二章 含磷聚硅氧烷阻燃剂的合成及表征
  • 2.1 引言
  • 2.2 实验部分
  • 2.2.1 原料及来源
  • 2.2.2 含磷聚硅氧烷阻燃剂的合成
  • 2.2.2.1 中间体DOPO-VMDMS 的合成
  • 2.2.2.2 含磷聚硅氧烷阻燃剂-Ⅰ(DVN)的合成
  • 2.2.2.3 含磷聚硅氧烷阻燃剂-Ⅱ(DVP)的合成
  • 2.2.3 测试与表征
  • 2.3 结果与讨论
  • 2.3.1 中间体DOPO-VMDMS 的结构表征
  • 2.3.2 含磷聚硅氧烷阻燃剂-Ⅰ(DVN)
  • 2.3.3 含磷聚硅氧烷阻燃剂-Ⅱ(DVP)
  • 2.4 本章小结
  • 参考文献
  • 第三章 含磷聚硅氧烷阻燃剂在PC/ABS 中的应用
  • 3.1 引言
  • 3.2 实验部分
  • 3.2.1 原料及来源
  • 3.2.2 PC/ABS/FR 复合物的制备
  • 3.2.3 测试与表征
  • 3.3 结果与讨论
  • 3.3.1 DVN 在PC/ABS 中的应用
  • 3.3.1.1 不同阻燃剂对PC/ABS 阻燃性能的影响
  • 3.3.1.2 DVN 对PC/ABS 阻燃性能的影响
  • 3.3.1.3 DVN-Ⅴ对PC/ABS 热性能的影响
  • 3.3.1.4 DVN-Ⅴ对PC/ABS 残炭形貌的影响
  • 3.3.2 DVP 在PC/ABS 中的应用
  • 3.3.2.1 DVP 对PC/ABS 阻燃性能的影响
  • 3.3.2.2 DVP-Ⅲ对PC/ABS 热性能的影响
  • 3.3.2.3 动态力学性能
  • 3.3.2.4 DSC 测试
  • 3.3.2.5 DVP-Ⅲ对PC/ABS 残炭形貌的影响
  • 3.3.2.6 DVP 对PC/ABS 力学性能的影响
  • 3.3.2.7 DVP 在PC/ABS 中的分散
  • 3.4 本章小结
  • 参考文献
  • 第四章 纳米OMT 在PC/ABS/DVP 中的应用研究
  • 4.1 引言
  • 4.2 实验部分
  • 4.2.1 原料及来源
  • 4.2.2 PC/ABS 纳米复合物的制备
  • 4.2.3 测试与表征
  • 4.3 结果与讨论
  • 4.3.1 纳米蒙脱土在PC/ABS 中的分散
  • 4.3.2 热重分析
  • 4.3.3 阻燃性能
  • 4.3.4 炭层结构形貌
  • 4.4 本章小结
  • 参考文献
  • 第五章 阻燃PC/ABS 热降解过程的研究
  • 5.1 引言
  • 5.2 实验部分
  • 5.2.1 原料及来源
  • 5.2.2 PC/ABS/FR 阻燃体系的制备
  • 5.2.3 测试与表征
  • 5.3 结果与讨论
  • 5.3.1 降解动力学的研究
  • 5.3.2 TG-FTIR 联用结果分析
  • 5.3.3 残炭分析
  • 5.4 本章小结
  • 参考文献
  • 第六章 全文总结
  • 致谢
  • 攻读博士学位期间发表的论文及研究成果
  • 相关论文文献

    • [1].基于固体分散剂制样的裂解/气相色谱-质谱联用定量测定PC/ABS共混物比例[J]. 分析测试学报 2020(06)
    • [2].PC/ABS在高应变率下的压缩大变形[J]. 精密成形工程 2017(03)
    • [3].不锈钢纤维填充PC/ABS导电复合材料的制备及性能研究[J]. 塑料科技 2016(10)
    • [4].硼酸锌阻燃抑烟PC/ABS的研究[J]. 合成材料老化与应用 2016(01)
    • [5].注塑工艺对PC/ABS合金电镀性能的影响研究[J]. 塑料工业 2013(06)
    • [6].一种新型含硅阻燃剂的合成及在PC/ABS中的应用[J]. 高分子材料科学与工程 2008(03)
    • [7].PC/ABS合金新型高效相容剂[J]. 塑料工业 2013(S1)
    • [8].粗化条件对电镀PC/ABS合金的影响[J]. 工程塑料应用 2013(06)
    • [9].相容剂对PC/ABS共混物性能的影响[J]. 化工中间体 2011(08)
    • [10].阻燃PC/ABS合金用磷系阻燃剂的研究进展[J]. 材料导报 2013(13)
    • [11].相容剂对PC/ABS合金力学性能的影响[J]. 化学与生物工程 2010(08)
    • [12].PC/ABS哑光合金的研究[J]. 中国塑料 2009(06)
    • [13].用于阻燃PC/ABS的无卤芳香族磷酸酯的研究进展[J]. 合成树脂及塑料 2008(02)
    • [14].注塑工艺对哑光PC/ABS光泽度的影响[J]. 上海塑料 2015(03)
    • [15].有机改性蒙脱土对无卤阻燃PC/ABS合金的影响[J]. 塑料工业 2012(05)
    • [16].PC/ABS共混体系的研究进展[J]. 广州化工 2012(05)
    • [17].聚硼硅氧烷阻燃PC/ABS合金的制备与其阻燃性能[J]. 中国塑料 2010(08)
    • [18].PC/ABS合金形态结构与性能研究新进展[J]. 塑料工业 2008(S1)
    • [19].PC/ABS/聚硼硅氧烷阻燃合金的性能[J]. 化工进展 2016(03)
    • [20].改性PC/ABS合金的研究[J]. 工程塑料应用 2014(09)
    • [21].PC/ABS合金应力开裂行为研究[J]. 工程塑料应用 2010(04)
    • [22].磷酸酯类阻燃剂在PC/ABS合金中的应用研究[J]. 信息记录材料 2017(02)
    • [23].PC/ABS合金用阻燃体系的研究进展[J]. 广东化工 2008(03)
    • [24].甲基苯基聚硼硅氧烷对PC/ABS合金阻燃性能的影响[J]. 中国塑料 2013(12)
    • [25].改性PC/ABS塑料合金的制备及力学性能研究[J]. 石油化工高等学校学报 2008(02)
    • [26].新型磷硅阻燃剂的合成及其对PC/ABS的阻燃研究[J]. 工程塑料应用 2008(04)
    • [27].膨胀型阻燃PC/ABS合金材料燃烧性能研究[J]. 科技信息(学术研究) 2008(06)
    • [28].酸碱处理蒙脱土与磷酸酯阻燃剂复配阻燃PC/ABS合金[J]. 高等学校化学学报 2013(02)
    • [29].PC/ABS合金技术专利分析[J]. 现代塑料加工应用 2012(06)
    • [30].马来酸酐接枝类相容剂对PC/ABS共混体系的影响[J]. 杭州师范大学学报(自然科学版) 2010(02)

    标签:;  ;  ;  ;  

    含磷聚硅氧烷的合成及其在PC/ABS中的应用
    下载Doc文档

    猜你喜欢