点缺陷在铁电晶体时效中的作用及其相关现象的研究

点缺陷在铁电晶体时效中的作用及其相关现象的研究

论文摘要

铁电晶体作为一类重要的电介质材料,具有较高的介电常数,显著的热释电和压电效应,广泛应用于从尖端技术到日常生活的多个领域。点缺陷(空位,掺杂等)在铁电晶体中的存在强烈的影响了其几乎所有的物理性质,并且与铁电体中许多未解决的问题,特别是铁电时效现象(指性能随时间发生变化)密切相关。一方面,时效现象的存在严重降低了铁电器件的可靠性与稳定性。另一方面,出现时效问题的机理还不能用已有的铁电理论解释。为了找出时效现象的根本原因,迄今为止人们提出了很多模型,但是仍然未有一个统一的观点。因此时效问题的研究对于铁电材料的理论研究和应用前景都有着重要的意义。最近,报道指出晶体中点缺陷具有短程有序对称性遵循的普适性原理(简称点缺陷对称性原理)。将该点缺陷对称性原理应用于铁电体中,能够合理的解释在时效的掺杂铁电单晶中通过可逆畴翻转实现巨大的可回复电致应变的试验结果。更为重要的是,这一原理为理解点缺陷在铁电时效中的作用提供了全新的思路。基于此,本文利用点缺陷对称性原理,系统地研究掺杂缺陷的钛酸钡(BaTiO3)铁电体中的时效现象,以期给出铁电时效的统一微观解释。首先,基于点缺陷对称性原理,在时效的铁电单晶中已经获得巨大的可回复电致应变,这表明时效现象对铁电晶体的应用可以带来有益的影响。但是从工业角度出发,人们更关心铁电多晶材料,因为其容易批量生产。因此我们将此原理首次应用到工业中更为关心的多晶陶瓷材料中。实验表明,室温时效的1.0mol%Mn掺杂钛酸锶钡(Ba0.95Sr0.05TiO3)多晶陶瓷材料,在3.0kV/mm电场下可以获得0.12-0.15%的大应变,与传统的压电陶瓷Pb(Zr, Ti)O3(PZT)所产生的压电效应应变相当。此结果表明基于点缺陷对称性原理可以在时效的环境友好(无铅)铁电陶瓷材料中产生可回复电致应变效应,这为此新的应变效应进入实际应用迈出了关键的一步。其次,时效铁电体中的巨大可回复电致应变是基于点缺陷对称性原理所带来的可逆畴翻转机制产生的。实验上宏观的可回复应变已经在单晶及多晶样品中都观察到,但是,导致巨大电致应变效应的可逆畴翻转过程本身还未得到直接证明。因此本文采用原位畴观察实验对时效的Mn掺杂BaTiO3单晶样品在电场下的畴演变过程进行观察,并且把介观的畴翻转行为和宏观的铁电体的极化转向及巨大电致应变之间相互关系结合起来。结果表明:时效过的多畴样品,加电场翻转为单畴,但是电场去除后又能回到原来多畴状态,此现象对应于宏观的可回复应变;这一实验结果为可逆畴翻转机制提供了最直接的介观证据。再次,时效现象及其相关的可回复电致应变和可逆畴翻转等多尺度现象都由基于点缺陷对称性原理的模型给出了很好的解释。但是历史上,有关时效现象的解释存在很多模型,并未有一个统一的观点。主要争论点在于时效现象究竟是畴壁效应还是畴体积效应。为了解决这一问题,我们制备了单畴的Mn掺杂BaTiO3单晶,并研究其时效现象。实验表明掺杂BaTiO3单晶的单畴样品也有时效效应,单畴状态在电场循环中被稳定。这一结果充分地支持了体效应是时效产生的最基本原因。并且体效应实际来源于普适的点缺陷对称性原理。采用点缺陷对称性原理的微观模型,可以解释所有已知的铁电时效现象,包括大信号电滞回线及小信号介电压电的时效(由于点缺陷效应使得畴壁在小电场下的移动性降低),从而表明铁电时效存在统一微观解释。最后,基于点缺陷对称性原理的时效模型可以解释时效效应因掺杂位置和掺杂种类不同而不同的现象。一方面,我们实验表明A位K离子受主掺杂BaTiO3单晶的时效弱于B位Mn离子掺杂的样品。这一现象,在已有的文献中并未报道过。另一方面,时效现象只在受主掺杂晶体中存在,但在La或Nb离子等施主掺杂的BaTiO3晶体中几乎没有时效现象。此已知现象也没有很好的微观解释。基于点缺陷对称性原理的半定量化时效模型可以对此作出解释:A位受主掺杂带来的较小的点缺陷对称性遵循驱动力决定了它的弱时效效应,而施主掺杂带来的点缺陷对称性遵循力太弱,不能克服阳离子空位缺陷短程扩散所受到的阻力,因而没有时效现象。这些解释表明可以从理论上判断不同体系时效的强弱有无,对于跟时效有关的实际应用具有重要的指导意义。以上研究表明,基于点缺陷对称性原理,在无铅铁电材料,特别是陶瓷材料中产生大的可回复应变,从而表明实际的工业应用潜能;并且铁电时效问题也得到了统一的清晰微观解释,这加深了对缺陷物理的理解从而为铁电晶体中其他点缺陷有关的问题提供了解决思路。

论文目录

  • ABSTRACT
  • 摘要
  • Chapter 1 Introduction and background
  • 1.1 Basic conceptions of ferroelectrics
  • 1.1.1 Mechanisms of polarization
  • 1.1.2 Ferroelectrics and crystal symmetry
  • 1.2 Characteristics and applications of ferroelectrics
  • 1.2.1 Phase transition in perovskite ferroelectrics
  • 1.2.2 Dielectric properties of ferroelectrics
  • 1.2.3 Ferroelectric properties of ferroelectrics
  • 1.2.4 Piezoelectric properties of ferroelectrics
  • 1.3 Landau theory on ferroelectric phase transition
  • 1.4 Point defects and its role in ferroelectrics
  • 1.4.1 Type of defects: iso-valence dopant
  • 1.4.2 Type of defects: hetero-valence dopant
  • 1.4.3 Ferroelectric aging phenomena
  • 1.5 Problems and dissertation objectives
  • Chapter 2 Defect symmetry principle in ferroelectrics
  • 2.1 Introduction to defect symmetry principle
  • 2.2 Aging process required by defect symmetry principle
  • 2.3 Expected aging-induced multi-scale phenomena
  • 2.3.1 Reversible domain switching
  • 2.3.2 Double hysteresis loop and large recoverable electrostrain
  • 2.4 Conclusions
  • 3 ceramics'>Chapter 3 Large recoverable electrostrain in Mn-doped (Ba,Sr)Ti03ceramics
  • 3.1 Introduction
  • 3.2 Experimental procedures
  • 3.2.1 Composition design and fabrication of ceramic sample
  • 3.2.2 Differential Scanning Calorimeter
  • 3.2.3 Ferroelectric hysteresis loop and electrostrain measurements
  • 3.3 Results and discussion
  • 3.3.1 Curie temperature and phase structure
  • 3.3.2 Large recoverable electrostrain based on defect symmetry principle
  • 3.3.3 Frequency dependence of the recoverable electrostrain effect
  • 3.3.4 Influence of Mn content on the recoverable electrostrain
  • 3.3.5 Fatigue test of the recoverable electrostrain
  • 3.4 Conclusions
  • 3 single crystals'>Chapter 4 In-situ observation on reversible domain switching in aged Mn-doped BaTiO3 single crystals
  • 4.1 Introduction
  • 4.2 Experimental procedures
  • 4.2.1 Preparation of single crystals
  • 4.2.2 Design of experimental setup
  • 4.3 Results of aged and unaged samples
  • 4.3.1 In-situ microscopy observation of domain patterns during electric field cycling
  • 4.3.2 Electrostrain behavior associated with domain switching process
  • 4.4 Discussion
  • 4.4.1 Relation among microscopic defect symmetry, mesoscopic domain switching behavior, and macroscopic electrostrain properties
  • 4.4.2 Comparison of our mechanism with others
  • 4.5 Conclusions
  • 3 single crystals'>Chapter 5 Aging effect in single-domain Mn-doped BaTi03 single crystals
  • 5.1 Introduction
  • 5.2 Experimental procedures
  • 5.2.1 Growth and poling of single crystals
  • 5.2.2 In-situ domain observation and hysteresis loop measurement
  • 5.3 Results
  • 5.3.1 Hysteresis loop of single-domain sample
  • 5.3.2 Domain switching of single-domain sample during field cycling
  • 5.4 Discussion
  • 5.4.1 Volume effect as the primary origin of ferroelectric aging
  • 5.4.2 Explanation on single domain aging by defect symmetry principle
  • 5.4.3 Explanation on small signal aging by defect symmetry principle
  • 5.5 Conclusions
  • 3 crystals'>Chapter 6 Different aging between A-site and B-site acceptor doped BaTi03crystals
  • 6.1 Introduction
  • 6.2 Growth of single crystals and property measurements
  • 3 samples'>6.3 Aging effect in A-site and B-site acceptor doped BaTi03samples
  • 6.4 Discussion on the aging difference
  • 6.4.1 Explanation on the aging of acceptor doped sample by defect symmetry principle
  • 6.4.2 Explanation on the different aging between A-site and B-site acceptor doped samples-symmetry conforming force
  • 6.4.3 Calculation of symmetry conforming force in acceptor doped samples
  • 6.4.4 Difficulty in explaining aging difference by previous aging models
  • 6.5 Conclusions
  • 3 crystals and its origin'>Chapter 7 Aging in donor doped BaTi03 crystals and its origin
  • 7.1 Introduction
  • 7.2 Fabrication of ceramic samples and measurements
  • 7.3 Aging effect in donor doped samples
  • 7.4 Discussion on the origin of no aging in donor doped samples
  • 7.4.1 Explaination on aging of donor doped samples by defect symmetry principle
  • 7.4.2 Calculation of symmetry-conforming force in donor doped samples
  • 7.4.3 Difficulty in explaining no aging in donor doped samples by previous aging models
  • 7.5 Conclusions
  • Chapter 8 Conclusions and future work
  • 8.1 Conclusions
  • 8.2 Future work
  • Acknowledgments
  • References
  • Achievements
  • 相关论文文献

    • [1].铁电晶体管存储器的读出电路设计[J]. 压电与声光 2014(02)
    • [2].福建物构所分子基铁电晶体材料研究获新进展[J]. 人工晶体学报 2012(01)
    • [3].铁电晶体与器件[J]. 现代物理知识 2014(05)
    • [4].我国在分子铁电晶体领域取得重要阶段性研究进展[J]. 中国材料进展 2013(03)
    • [5].一种可以表征铁电晶体管存储性能退化的宏模型[J]. 北京大学学报(自然科学版) 2009(06)
    • [6].新型铁电晶体铌镥酸铅-钛酸铅的生长与性能[J]. 无机材料学报 2014(01)
    • [7].分子基铁电晶体的前沿交叉研究[J]. 中国科学基金 2015(04)
    • [8].新型弛豫铁电晶体PIN-PT的单晶生长与性能表征[J]. 人工晶体学报 2014(10)
    • [9].PMN-PT∶Er~(3+)铁电晶体的光谱特性与J-O理论分析[J]. 人工晶体学报 2020(06)
    • [10].美研制新型非易失性铁电存储设备[J]. 硅谷 2011(20)
    • [11].美研制新型非易失性铁电存储设备[J]. 硅酸盐通报 2011(06)
    • [12].铁电晶体畴壁增强非线性性质的研究[J]. 光学学报 2011(09)
    • [13].单斜相弛豫铁电单晶0.24PIN–0.43PMN–0.33PT的电光性能[J]. 硅酸盐学报 2015(11)
    • [14].Pb(Mg_(1/3)Nb_(2/3))O_3弛豫铁电晶体的生长形貌和生长机理[J]. 压电与声光 2014(03)
    • [15].Er~(3+)掺杂68Pb(Mg_(1/3)Nb_(2/3))O_3-32PbTiO_3弛豫铁电晶体光学性能的研究[J]. 西安工业大学学报 2016(06)
    • [16].弛豫铁电晶体PZNT(001)晶面的腐蚀行为[J]. 人工晶体学报 2011(02)
    • [17].准周期铁电晶体中不同阶次的准相位匹配谐频[J]. 光学学报 2009(12)
    • [18].TiN/HZO/HfO_2/Si铁电晶体管栅结构的~(60)Coγ射线总剂量辐射效应[J]. 湘潭大学学报(自然科学版) 2019(03)
    • [19].PZN-PMN-PT铁电晶体的生长及表征[J]. 西安工业大学学报 2013(02)
    • [20].负热膨胀铁电晶体研究进展[J]. 人工晶体学报 2017(02)
    • [21].Pb(Sc_(1/2)Nb_(1/2))O_3-Pb(Mg_(1/3)Nb_(2/3))O_3-PbTiO_3-PbZrO_3弛豫铁电晶体的生长及表征[J]. 人工晶体学报 2016(05)
    • [22].PSN-PMN-PT∶Er~(3+)晶体Judd-Ofelt理论分析[J]. 人工晶体学报 2019(12)

    标签:;  ;  ;  ;  ;  

    点缺陷在铁电晶体时效中的作用及其相关现象的研究
    下载Doc文档

    猜你喜欢