高氮无镍奥氏体不锈钢耐腐蚀性的研究

高氮无镍奥氏体不锈钢耐腐蚀性的研究

论文摘要

与传统的奥氏体不锈钢相比,高氮无镍奥氏体不锈钢保持了高塑性、韧性、无磁性的性能特点,主要是强度明显提高,同时还具有良好的生物相容性及优良的耐腐蚀性能,并且节约了贵重的镍资源,降低了不锈钢生产的成本,因此成为世界各国竞争和研发的焦点。目前国际上普遍采用高压冶金的方法生产高氮无镍奥氏体不锈钢,该方法生产成本高,安全隐患大,不宜进行大规模生产,因此寻求一种常压下冶炼高氮无镍奥氏体不锈钢的方法成为材料科学研究的重点。常压下氮在钢中的溶解度很低,与高压冶金相比,常压下冶炼的高氮无镍奥氏体不锈钢的铸态组织中存在大量的氮气孔,氮元素分布不均,但是在随后的锻造过程中氮气孔会焊合,经固溶处理后氮元素分布均匀,组织为单相奥氏体,在此状态下,试验用钢是否具有优异的抗腐蚀性能是常压冶炼和生产的高氮无镍奥氏体不锈钢能否实际应用的关键。本文以一种常压下冶炼的高氮无镍奥氏体不锈钢Cr18Mn18Mo2NbN0.6为材料,利用扫描电子显微镜、光学显微镜等对铸态、锻造态和固溶处理态进行了显微组织分析;在酸性介质(10%H2SO4和10%HNO3)中对固溶处理后的高氮无镍奥氏体不锈钢和1Cr18Ni9Ti进行了酸浸试验和极化曲线测试;在中性介质(3.5%NaCl)中对其进行了盐雾试验和极化曲线测试;对固溶态、氮化物析出后及压缩变形量分别为10%、20%、30%和40%的试验钢进行了显微组织分析、三氯化铁浸泡试验和极化曲线测试。实验结果表明,高氮无镍奥氏体不锈钢的铸态组织为等轴枝晶,枝晶间存在未溶的片状氮化物和氮气孔,氮气孔在锻造过程中可以焊合。试验钢锻造后的组织为明显的层状组织,基体为奥氏体,氮化物以层片状分布在层状组织界面以及层与层之间。固溶处理后其组织为单相奥氏体,组织中存在大量的退火孪晶,奥氏体晶粒细小;高氮无镍奥氏体不锈钢在10%H2SO4和10%HNO3中的腐蚀速率小于1Cr18Ni9Ti,其自腐蚀电位、点蚀电位较高、钝化区较宽,这是氮元素提高了耐蚀性的结果;高氮无镍奥氏体不锈钢在3.5%NaCl中的盐雾腐蚀速度小于1Cr18Ni9Ti,1Cr18Ni9Ti出现严重的晶间腐蚀,而高氮无镍奥氏体不锈钢表面仅有少量的较小的点蚀坑,高氮无镍奥氏体不锈钢自腐蚀电位较高,钝态电流密度较小,因此,高氮无镍奥氏体不锈钢比1Cr18Ni9Ti有较强的抗Cl-腐蚀的能力;不同冷变形量的试验钢自腐蚀电位、点蚀电位与固溶态近似相等,但变形量越大,点蚀坑的数目越多,蚀坑平均尺寸越大,氮化物析出后,试验钢的点蚀电位明显降低,并出现大面积的点蚀坑。

论文目录

  • 摘要
  • Abstract
  • 引言
  • 第一章 绪论
  • 1.1 高氮钢的定义
  • 1.2 高氮奥氏体不锈钢的发展历史及现状
  • 1.3 高氮钢的热处理工艺及显微组织
  • 1.4 高氮奥氏体不锈钢中氮对显微组织及力学性能的影响
  • 1.5 高氮奥氏体不锈钢的耐腐蚀性能
  • 1.6 本课题研究的内容与意义
  • 第二章 高氮无镍奥氏体不锈钢的成分设计及制造方法
  • 2.1 高氮无镍奥氏体不锈钢的成分设计
  • 2.2 高氮无镍奥氏体不锈钢的冶炼
  • 第三章 高氮无镍奥氏体不锈钢的显微组织特征
  • 3.1 高氮无镍奥氏体不锈钢的铸态显微组织
  • 3.2 高氮无镍奥氏体不锈钢的锻造态显微组织
  • 3.3 高氮无镍奥氏体不锈钢的固溶处理态显微组织
  • 3.4 本章小结
  • 第四章 高氮无镍奥氏体不锈钢在酸性介质中的抗腐蚀性能
  • 4.1 酸浸实验
  • 4.2 极化曲线测试
  • 4.3 本章小结
  • 第五章 高氮无镍奥氏体不锈钢在中性介质中的抗腐蚀性能
  • 5.1 高氮无镍奥氏体不锈钢的抗盐雾腐蚀性能
  • 5.2 高氮无镍奥氏体不锈钢的极化曲线测试
  • 5.3 本章小结
  • 第六章 高氮无镍奥氏体不锈钢不同显微组织对抗腐蚀性能影响
  • 6.1 高氮无镍奥氏体不锈钢固溶、冷变形及析出氮化物的显微组织
  • 6.2 三氯化铁浸泡实验
  • 6.3 极化曲线测定
  • 6.4 本章小结
  • 第七章 结论
  • 致谢
  • 参考文献
  • 作者简介
  • 攻读硕士学位期间研究成果
  • 相关论文文献

    • [1].论塑性变形及疲劳损伤对304奥氏体不锈钢电磁特性的影响[J]. 中国设备工程 2019(23)
    • [2].石化工程中奥氏体不锈钢焊接技术的研究[J]. 石化技术 2020(01)
    • [3].配分工艺对301奥氏体不锈钢组织和力学性能的影响[J]. 金属热处理 2020(02)
    • [4].奥氏体不锈钢集箱管接头与中铬钼钢管连接方案的设计及分析[J]. 锅炉制造 2020(04)
    • [5].厚壁高碳奥氏体不锈钢347H的焊接技术[J]. 化工机械 2020(03)
    • [6].304奥氏体不锈钢摩擦学实验研究[J]. 机床与液压 2020(16)
    • [7].节镍型奥氏体不锈钢冷轧生产过程相关问题研究[J]. 天津冶金 2020(04)
    • [8].高强度奥氏体不锈钢钢带特性分析与研究[J]. 化工装备技术 2020(05)
    • [9].ZG0Cr21Ni13Mo3NbN新型奥氏体不锈钢热物理力学性能研究[J]. 南方农机 2020(21)
    • [10].节镍奥氏体不锈钢表面质量改善研究[J]. 炼钢 2019(06)
    • [11].奥氏体不锈钢U型管弯管段固溶处理[J]. 石油化工建设 2019(S1)
    • [12].镍过敏的危害与无镍高氮奥氏体不锈钢(二)[J]. 钟表(最时间) 2018(04)
    • [13].奥氏体不锈钢新管腐蚀泄漏原因分析[J]. 电力科技与环保 2016(06)
    • [14].高氮奥氏体不锈钢的δ相转变研究[J]. 热加工工艺 2016(20)
    • [15].数值模拟在高氮奥氏体不锈钢开发中的应用[J]. 铸造技术 2017(04)
    • [16].16Cr奥氏体不锈钢晶间腐蚀的敏感性[J]. 材料保护 2017(03)
    • [17].节镍型高氮奥氏体不锈钢的动态再结晶行为[J]. 金属热处理 2017(07)
    • [18].退火对310S奥氏体不锈钢组织和腐蚀磨损性能的影响[J]. 热加工工艺 2017(12)
    • [19].铸造奥氏体不锈钢强磁性原因及解决措施[J]. 铸造 2017(09)
    • [20].超级奥氏体不锈钢的高温变形行为[J]. 钢铁 2017(10)
    • [21].一种高氮奥氏体不锈钢的室温拉伸性能研究[J]. 科技传播 2016(07)
    • [22].铬镍奥氏体不锈钢的焊接质量问题及对策[J]. 装备制造技术 2016(03)
    • [23].304NG奥氏体不锈钢在超临界水环境中的腐蚀行为[J]. 腐蚀与防护 2016(07)
    • [24].关于应变强化奥氏体不锈钢低温容器的分析[J]. 化工设计通讯 2016(06)
    • [25].气压对304奥氏体不锈钢低温离子渗氮组织与性能影响[J]. 材料热处理学报 2014(S2)
    • [26].超级奥氏体不锈钢的焊缝组织和性能概述[J]. 机械制造文摘(焊接分册) 2014(05)
    • [27].节镍型奥氏体不锈钢领域专利技术综述[J]. 广东化工 2015(12)
    • [28].304奥氏体不锈钢低气压离子渗氮组织与性能研究[J]. 热加工工艺 2015(18)
    • [29].300系奥氏体不锈钢中厚板连续酸洗线单混酸段酸洗实践[J]. 科学中国人 2016(36)
    • [30].高温对钠冷快堆关键设备用结构材料性能的影响[J]. 中国原子能科学研究院年报 2016(00)

    标签:;  ;  ;  ;  ;  

    高氮无镍奥氏体不锈钢耐腐蚀性的研究
    下载Doc文档

    猜你喜欢