聚苯胺基超级电容器的组装与性能研究

聚苯胺基超级电容器的组装与性能研究

论文摘要

超级电容器是一种新型的能量转换和储存元件,由于具有大容量和高功率密度而备受关注。超级电容器在使用一段时间后,电容值会不断衰减。电容值衰减过快影响超级电容器的性能和缩短其使用寿命。本文以电容器电容的稳定性与降解因素为主要内容展开研究。采用恒电位聚合法在不锈钢电极(SS)上合成得到硫酸(H2SO4)或者对甲基苯磺酸(p-TSA)掺杂的微纳米结构PANI。以PANI修饰的不锈钢电极(SS)为工作电极,饱和甘汞电极(SCE)为参比电极,铂(Pt)电极为对电极,采用三电极体系,用交流阻抗测试和循环伏安法研究了修饰电极的电容行为。考察了PANI掺杂酸种类、PANI膜厚度、循环伏安测试的扫描速度、扫描电位、电解质浓度、电解质种类等因素对电容大小及稳定性的影响。研究结果表明,比电容随着膜厚度的增大先增大后减小,当聚合电量为3.2C/cm2时,得到的比电容最大。比电容随扫描速度的增大先增大后减小,存在一个最佳的扫描速度,H2SO4掺杂体系在50 mV/s时得到的比电容最大。p-TSA掺杂体系在200 mV/s时得到的比电容最大。扫描电位区间显著影响电容器电极的稳定性,过高的扫描电位会造成PANI氧化,比电容迅速衰减。电解质对比电容有重要影响,H2SO4电解质浓度的提高有利于增大比电容,但比电容衰减快;H2SO4介质中加入体积较小的阴离子(例如Br-、ClO4)可以显著提高电容的循环稳定性,但Br-浓度过高会腐蚀不锈钢基体电极,影响电容的稳定性;同浓度的p-TSA、HClO4和H2SO4电解质中,在p-TSA中的稳定性最好,H2SO4中的最差;当p-TSA作电解质时,在所研究的浓度范围内,p-TSA掺杂聚合的PANI/SS的稳定性随着p-TSA浓度的增大而提高。混合电解质中各种酸均参与PANI的掺杂/脱掺杂反应,在混合电解质中的电容稳定性介于参与混合的两种酸之间。总体来说,p-TSA掺杂的PANI比H2SO4掺杂的PANI有更加优越的电容特性。

论文目录

  • 摘要
  • ABSTRACT
  • 第一章 文献综述
  • 1.1 超级电容器概述
  • 1.1.1 引言
  • 1.1.2 超级电容器的特点
  • 1.1.3 超级电容器的应用
  • 1.2 双电层电容器
  • 1.2.1 双电层电容器的结构与原理
  • 1.2.2 双电层电容器电极材料的研究进展
  • 1.3 赝电容器
  • 1.3.1 金属氧化物型赝电容
  • 1.3.2 导电聚合物型赝电容
  • 1.4 超级电容器的电解质
  • 1.4.1 液态电解质研究进展
  • 1.4.2 固态电解质研究进展
  • 1.5 聚苯胺(PANI)研究进展
  • 1.5.1 聚苯胺的结构
  • 1.5.2 聚苯胺的制备方法
  • 1.5.3 聚苯胺基电极材料的研究进展
  • 1.6 本课题的研究内容及研究意义
  • 第二章 实验原理和方法
  • 2.1 实验的主要仪器设备和药品
  • 2.1.1 实验的主要仪器设备
  • 2.1.2 实验主要药品及其预处理方法
  • 2.2 超级电容器的研究路线
  • 2.3 超级电容器主要性能参数
  • 2.3.1 比电容(Specific Capacitance, SC)
  • 2.3.2 能量密度
  • 2.3.3 功率密度
  • 2.3.4 循环稳定性
  • 2.3.5 电流效率
  • 2.4 超级电容器性能测试方法
  • 2.4.1 循环伏安法
  • 2.4.2 交流阻抗测试
  • 2.5 本章小节
  • 2SO4掺杂PANI修饰的SS电极电容行为研究'>第三章 H2SO4掺杂PANI修饰的SS电极电容行为研究
  • 3.1 电极的预处理和PANI/SS电极的制备
  • 3.1.1 不锈钢电极的预处理
  • 2SO4掺杂PANI修饰的SS电极的制备'>3.1.2 H2SO4掺杂PANI修饰的SS电极的制备
  • 3.2 影响PANI/SS电极电容大小及稳定性的因素考察
  • 3.2.1 PANI膜厚度的影响
  • 3.2.2 扫描速度的影响
  • 3.2.3 扫描电位的影响
  • 3.2.4 电解质的影响
  • 3.3 单位面积沉积电量与单位面积电容的关系
  • 3.4 本章小结
  • 第四章 p-TSA掺杂PANI修饰的SS电极电容行为的初步探索
  • 4.1 电极的预处理和PANI/SS电极的制备
  • 4.1.1 电极的预处理
  • 4.1.2 p-TSA掺杂PANI修饰SS电极的制备
  • 4.2 影响PANI/SS电极电容大小及稳定性的因素
  • 2SO4掺杂PANI与p-TSA掺杂PANI的电容比较'>4.2.1 H2SO4掺杂PANI与p-TSA掺杂PANI的电容比较
  • 4.2.2 膜厚的影响
  • 4.2.3 扫描速度的影响
  • 4.2.4 扫描电位的影响
  • 4.2.5 电解质的影响
  • 4.2.6 经过p-TSA再掺杂的PANI的电容特性
  • 4.3 本章小结
  • 第五章 结论与展望
  • 5.1 结论
  • 5.2 展望
  • 参考文献
  • 发表论文和参加科研情况说明
  • 致谢
  • 相关论文文献

    • [1].ZnO@MOF@PANI core-shell nanoarrays on carbon cloth for high-performance supercapacitor electrodes[J]. Journal of Energy Chemistry 2019(08)
    • [2].Thermal conductivity of PVDF/PANI-nanofiber composite membrane aligned in an electric field[J]. Chinese Journal of Chemical Engineering 2018(05)
    • [3].Thermal Characteristics of PVA-PANI-ZnS Nanocomposite Film Synthesized by Gamma Irradiation Method[J]. Chinese Physics Letters 2018(11)
    • [4].Synthesis and Enhanced Electrochemical Activity of Ag-Pt Bimetallic Nanoparticles Decorated MWCNTs/PANI Nanocomposites[J]. Journal of Wuhan University of Technology(Materials Science) 2018(05)
    • [5].Immobilization of PANI on Mesoporous Carbon:Preparation and Supercapacitor Performance[J]. Transactions of Nanjing University of Aeronautics and Astronautics 2018(04)
    • [6].A Self-Powered Breath Analyzer Based on PANI/PVDF Piezo-Gas-Sensing Arrays for Potential Diagnostics Application[J]. Nano-Micro Letters 2018(04)
    • [7].NiCo_2O_4 decorated PANI–CNTs composites as supercapacitive electrode materials[J]. Journal of Energy Chemistry 2017(01)
    • [8].Electrical Conductivity and pH Sensitivity of Ordered Porous Gel Acrylate Polymer Membrane with Nano-PANI Doping[J]. Journal of Harbin Institute of Technology 2017(02)
    • [9].接枝聚合法制备PANI/CeO_2-APTMS复合材料及其电化学性能[J]. 高分子材料科学与工程 2017(07)
    • [10].花状CuS/PANI复合材料的制备及其电磁屏蔽性能研究[J]. 现代化工 2017(11)
    • [11].MnFe_2O_4@PANI@Ag Heterogeneous Nanocatalyst for Degradation of Industrial Aqueous Organic Pollutants[J]. Journal of Materials Science & Technology 2016(02)
    • [12].PANI导电水凝胶的制备及其进展[J]. 高分子通报 2020(06)
    • [13].原位聚合法制备PANI/RGO导电复合材料的性能[J]. 工程塑料应用 2018(03)
    • [14].硅烷偶联剂预处理PANI对水性涂料性能的影响[J]. 精细化工 2017(11)
    • [15].Synthesis and supercapacitor characteristics of PANI/CNTs composites[J]. Chinese Science Bulletin 2010(11)
    • [16].Preparation of Surfactants Directed PANI/In_2O_3 Nanocomposite Thin Films and Its NH_3-Sensing Properties[J]. Journal of Electronic Science and Technology 2010(02)
    • [17].Preparation,Characterization and Comparative NH_3-sensing Characteristic Studies of PANI/inorganic Oxides Nanocomposite Thin Films[J]. Journal of Materials Science & Technology 2010(07)
    • [18].Chlorine gas sensors using hybrid organic semiconductors of PANI/ZnPcCl_(16)[J]. 半导体学报 2010(08)
    • [19].Investigation of Novel Short Fiber-like Polyaniline/Cerium Nitrate Composite[J]. Journal of Wuhan University of Technology(Materials Science) 2019(01)
    • [20].Nano-Au@PANI蛋黄空心结构电极材料的构筑及超级电容性能[J]. 材料导报 2018(01)
    • [21].PANI/MoS_2复合材料的制备及其电化学性能研究[J]. 当代化工 2018(05)
    • [22].双脉冲电镀制备PbO_2-PANI复合电极的研究[J]. 化工新型材料 2018(07)
    • [23].Two-dimensional polyaniline nanosheets via liquid-phase exfoliation[J]. Chinese Physics B 2017(04)
    • [24].Preparation and Antibacterial Activity of Three-component NiFe_2O_4@PANI@Ag Nanocomposite[J]. Journal of Materials Science & Technology 2014(07)
    • [25].PMOV_2/PANI/TiO_2复合材料的制备及光催化性能[J]. 化工新型材料 2012(12)
    • [26].Synthesis and characterization of conducting polyaniline nanocomposites containing ZnO nanorods[J]. Progress in Natural Science:Materials International 2012(04)
    • [27].PANI/Fe-杭锦2~#土催化剂对乙酸的光催化降解研究[J]. 内蒙古师范大学学报(自然科学汉文版) 2019(05)
    • [28].电场-抽滤法制备VACNTs/PANI复合膜及其热性能研究[J]. 广州化工 2018(15)
    • [29].Effect of CNTs and nano ZnO on physical and mechanical properties of polyaniline composites applicable in energy devices[J]. Progress in Natural Science:Materials International 2016(06)
    • [30].Ternary Fe_3O_4@PANI@Au nanocomposites as a magnetic catalyst for degradation of organic dyes[J]. Science China(Technological Sciences) 2017(05)

    标签:;  ;  ;  ;  

    聚苯胺基超级电容器的组装与性能研究
    下载Doc文档

    猜你喜欢