王倩:β分子筛的孔结构和酸性对FCC汽油硫转移反应性能的影响论文

王倩:β分子筛的孔结构和酸性对FCC汽油硫转移反应性能的影响论文

本文主要研究内容

作者王倩(2019)在《β分子筛的孔结构和酸性对FCC汽油硫转移反应性能的影响》一文中研究指出:近年来,随着环境保护压力的日益增大,绿色发展逐渐成为全世界大力提倡和推崇的发展模式,清洁能源的生产和使用越来越受到人们的重视,低硫、低烯烃、高辛烷值已成为现阶段清洁汽油生产的重要目标。尽管硫醇与二烯烃的醚化脱硫工艺已工业化,且脱硫效果显著,然而对于噻吩类有机硫化物的脱除依然存在问题。β分子筛由于其结构和酸性易调,比表面积较大,通过改性后预期具有良好的硫转移反应性能。因此,本文提出将硫醇醚化和噻吩烷基化过程进行耦合,一步法同时脱除FCC汽油中的硫醇、小分子噻吩类化合物、二烯烃的研究思路,考察不同处理方法对β分子筛载体的孔结构和酸性质的影响规律,以及对Mo-Ni/β分子筛催化剂的硫转移反应催化性能的影响。β分子筛孔径调节主要通过酸碱处理的方法,通过不同浓度NaOH溶液对β分子筛进行处理,对其结构、性质、催化活性、稳定性进行比较,得出最佳NaOH处理浓度为0.2mol/L,该条件下,β分子筛相对结晶度为68.82%,长程有序性较好,介孔比表面积增加到225 m2·g-1,孔体积增加到0.58 cm3·g-1,3.54nm、510 nm处介孔峰较为显著;进一步考察该改性载体制备的Mo-Ni/β分子筛催化剂的硫转移反应性能,在2.5 MPa、100℃、2 h-1条件下,对比未改性制备的催化剂,噻吩转化率由27.41%提高到48.94%,正丁硫醇的转化率由原来的94.31%增加到99.00%,硫化物反应稳定性均有很大程度的提高,异戊二烯转化率由未处理前的74.72%变为79.53%,而1-己烯和环己烯转化率变化不大。对碱处理后的β分子筛又用0.1 mol/L柠檬酸酸洗,发现其结构和性质被进一步改善,Hβ(0.2M-NaOH+0.1M-NMS)分子筛晶型结构有所恢复,相对结晶度为70.49%,介孔比表面积、孔体积进一步增加,分别为247 m2·g-1、0.71 cm3·g-1,介孔峰向大孔径方向移动;通过考察制备的Mo-Ni/β分子筛催化剂的硫转移反应性能,噻吩转化率为60.23%,正丁硫醇转化率为99.02%,硫化物转化率稳定性提高较为明显,异戊二烯转化率85.79%,1-己烯和环己烯转化率略微增加。对β分子筛的酸性调变主要通过酸性助剂F来实现,结果发现0.5wt%F修饰的β分子筛表现出最佳的反应活性和稳定性。添加0.5wt%的F可增强Hβ分子筛的中强酸量,同时总酸量由752.84μmol·g-1增加到975.49μmol·g-1,L/B由0.19变为2.28,酸分布得到优化。制备的Mo-Ni/F-β分子筛催化剂,噻吩转化率为66.73%,正丁硫醇转化率为99.80%,异戊二烯转化率89.62%,1-己烯转化率未超过9%,环己烯转化率未超过16%,催化性能大幅提高。

Abstract

jin nian lai ,sui zhao huan jing bao hu ya li de ri yi zeng da ,lu se fa zhan zhu jian cheng wei quan shi jie da li di chang he tui chong de fa zhan mo shi ,qing jie neng yuan de sheng chan he shi yong yue lai yue shou dao ren men de chong shi ,di liu 、di xi ting 、gao xin wan zhi yi cheng wei xian jie duan qing jie qi you sheng chan de chong yao mu biao 。jin guan liu chun yu er xi ting de mi hua tuo liu gong yi yi gong ye hua ,ju tuo liu xiao guo xian zhe ,ran er dui yu sai fen lei you ji liu hua wu de tuo chu yi ran cun zai wen ti 。βfen zi shai you yu ji jie gou he suan xing yi diao ,bi biao mian ji jiao da ,tong guo gai xing hou yu ji ju you liang hao de liu zhuai yi fan ying xing neng 。yin ci ,ben wen di chu jiang liu chun mi hua he sai fen wan ji hua guo cheng jin hang ou ge ,yi bu fa tong shi tuo chu FCCqi you zhong de liu chun 、xiao fen zi sai fen lei hua ge wu 、er xi ting de yan jiu sai lu ,kao cha bu tong chu li fang fa dui βfen zi shai zai ti de kong jie gou he suan xing zhi de ying xiang gui lv ,yi ji dui Mo-Ni/βfen zi shai cui hua ji de liu zhuai yi fan ying cui hua xing neng de ying xiang 。βfen zi shai kong jing diao jie zhu yao tong guo suan jian chu li de fang fa ,tong guo bu tong nong du NaOHrong ye dui βfen zi shai jin hang chu li ,dui ji jie gou 、xing zhi 、cui hua huo xing 、wen ding xing jin hang bi jiao ,de chu zui jia NaOHchu li nong du wei 0.2mol/L,gai tiao jian xia ,βfen zi shai xiang dui jie jing du wei 68.82%,chang cheng you xu xing jiao hao ,jie kong bi biao mian ji zeng jia dao 225 m2·g-1,kong ti ji zeng jia dao 0.58 cm3·g-1,3.54nm、510 nmchu jie kong feng jiao wei xian zhe ;jin yi bu kao cha gai gai xing zai ti zhi bei de Mo-Ni/βfen zi shai cui hua ji de liu zhuai yi fan ying xing neng ,zai 2.5 MPa、100℃、2 h-1tiao jian xia ,dui bi wei gai xing zhi bei de cui hua ji ,sai fen zhuai hua lv you 27.41%di gao dao 48.94%,zheng ding liu chun de zhuai hua lv you yuan lai de 94.31%zeng jia dao 99.00%,liu hua wu fan ying wen ding xing jun you hen da cheng du de di gao ,yi wu er xi zhuai hua lv you wei chu li qian de 74.72%bian wei 79.53%,er 1-ji xi he huan ji xi zhuai hua lv bian hua bu da 。dui jian chu li hou de βfen zi shai you yong 0.1 mol/Lning meng suan suan xi ,fa xian ji jie gou he xing zhi bei jin yi bu gai shan ,Hβ(0.2M-NaOH+0.1M-NMS)fen zi shai jing xing jie gou you suo hui fu ,xiang dui jie jing du wei 70.49%,jie kong bi biao mian ji 、kong ti ji jin yi bu zeng jia ,fen bie wei 247 m2·g-1、0.71 cm3·g-1,jie kong feng xiang da kong jing fang xiang yi dong ;tong guo kao cha zhi bei de Mo-Ni/βfen zi shai cui hua ji de liu zhuai yi fan ying xing neng ,sai fen zhuai hua lv wei 60.23%,zheng ding liu chun zhuai hua lv wei 99.02%,liu hua wu zhuai hua lv wen ding xing di gao jiao wei ming xian ,yi wu er xi zhuai hua lv 85.79%,1-ji xi he huan ji xi zhuai hua lv lve wei zeng jia 。dui βfen zi shai de suan xing diao bian zhu yao tong guo suan xing zhu ji Flai shi xian ,jie guo fa xian 0.5wt%Fxiu shi de βfen zi shai biao xian chu zui jia de fan ying huo xing he wen ding xing 。tian jia 0.5wt%de Fke zeng jiang Hβfen zi shai de zhong jiang suan liang ,tong shi zong suan liang you 752.84μmol·g-1zeng jia dao 975.49μmol·g-1,L/Byou 0.19bian wei 2.28,suan fen bu de dao you hua 。zhi bei de Mo-Ni/F-βfen zi shai cui hua ji ,sai fen zhuai hua lv wei 66.73%,zheng ding liu chun zhuai hua lv wei 99.80%,yi wu er xi zhuai hua lv 89.62%,1-ji xi zhuai hua lv wei chao guo 9%,huan ji xi zhuai hua lv wei chao guo 16%,cui hua xing neng da fu di gao 。

论文参考文献

  • [1].掺杂稀土金属的Hβ分子筛固体酸的制备及其在异丁烷/丁烯烷基化反应中的应用[D]. 任冬梅.东北师范大学2005
  • [2].酸催化制备生物柴油的研究[D]. 盖玉娟.中国石油大学2009
  • 读者推荐
  • [1].钴基分子筛催化剂的制备及其费托合成反应性能研究[D]. 程世林.浙江科技学院2019
  • [2].高硅SSZ-13分子筛的高效合成及甲醇制烯烃催化性能[D]. 刘瑞.太原理工大学2019
  • [3].ZSM-5分子筛催化MTO反应中芳烃共催化剂的来源及酸性位对反应机理的影响[D]. 连霞霞.太原理工大学2019
  • [4].ZSM-22分子筛的制备、表征及其临氢异构性能研究[D]. 刘成连.太原理工大学2019
  • [5].Beta分子筛的合成及吸附性能研究[D]. 张佳琦.广西师范大学2019
  • [6].ZSM-5分子筛的无模板合成及表征[D]. 郝亚堃.太原理工大学2019
  • [7].重质油中多环芳烃选择性催化加氢的实验研究[D]. 刘凯.西安石油大学2019
  • [8].Ni/ZSM-22分子筛在费托油品加氢异构化反应中的研究[D]. 白宜灵.中国科学院大学(中国科学院过程工程研究所)2019
  • [9].多级孔分子筛吸附剂的制备及其低硫汽油吸附脱硫性能的研究[D]. 蒋坤洪.内蒙古大学2019
  • [10].乙醇胺路线改性β分子筛多相催化合成哌嗪和三乙烯二胺[D]. 李永强.天津大学2017
  • 论文详细介绍

    论文作者分别是来自西安石油大学的王倩,发表于刊物西安石油大学2019-07-04论文,是一篇关于噻吩论文,烷基化论文,分子筛论文,硫醚化论文,西安石油大学2019-07-04论文的文章。本文可供学术参考使用,各位学者可以免费参考阅读下载,文章观点不代表本站观点,资料来自西安石油大学2019-07-04论文网站,若本站收录的文献无意侵犯了您的著作版权,请联系我们删除。

    标签:;  ;  ;  ;  ;  

    王倩:β分子筛的孔结构和酸性对FCC汽油硫转移反应性能的影响论文
    下载Doc文档

    猜你喜欢