基于聚合物及阴离子表面活性剂的材料组装合成

基于聚合物及阴离子表面活性剂的材料组装合成

论文摘要

通过模拟自然界中生物矿物的形成过程、借鉴生物矿化的机理,制备复杂形貌和多级结构高级材料的仿生合成或生物启发合成方法,是近些年来一直备受关注的前沿课题。碳酸钙、羟基磷灰石和二氧化硅是生物矿物中最常见的成分,研究它们的仿生合成,对理解生物矿化的机理具有重要的指导意义,进而,对生物矿化机理的探索,又可以为仿生制备新型功能材料提供理论指导和设计依据。有机质(聚合物、表面活性剂或小分子)与无机组分之间的相互作用是控制材料组装和结构的核心,本论文通过设计聚合物和氨基酸阴离子表面活性剂与二氧化硅前驱体或钙离子之间的作用,组装合成二氧化硅、碳酸钙、磷酸钙材料。主要内容有以下几部分:1.设计合成富含侧链羧基的阴离子多肽聚L-谷氨酸,并以其作为模板剂,以3-氨丙基三甲氧基硅烷(APMS)和正硅酸乙酯(TEOS)为硅源,控制合成了微孔二氧化硅空心球。在合成过程中,硅源与阴离子多肽模板之间的组装依照以阴离子表面活性剂为模板剂组装合成介孔二氧化硅的机理,即S-N+I-机理,其中S表示阴离子多肽, I表示TEOS,N表示共结构导向剂APMS。组装过程中质子化的APMS与阴离子多肽之间形成静电相互作用,同时,APMS和TEOS共同水解聚合形成围绕阴离子多肽模板的二氧化硅骨架,多肽的二级结构为微孔孔道的模板。运用SEM、TEM、N2吸附详细考察了二氧化硅的形貌和结构。以阴离子多肽为模板,通过控制不同的反应条件,可以分别合成直径约170 nm的微孔空心球(比表面积为161m2/g),直径约为380 nm的微孔实心球(比表面积为400m2/g)和直径约为550 nm的微孔空心球(比表面积为350m2/g)。向多肽的水溶液中加入适量的有机溶剂四氢呋喃,得到直径约为200 nm的介孔二氧化硅实心球(比表面积为304 m2/g)。2.以阴离子聚合物聚丙烯酸(PAA)为模板,以3-氨丙基三甲氧基硅烷(APMS)和正硅酸乙酯(TEOS)为硅源,按照S-N+I-机理合成了聚丙烯酸-二氧化硅(PAA/SiO2)复合纳米球。SEM、TEM、TG、FT-IR表征证明,合成的纳米球是聚丙烯酸和二氧化硅复合物,直径约为80 nm。复合纳米球焙烧后的N2吸附-脱附等温线表明,以柔性链的PAA分子作为模板合成的二氧化硅粒子不具有孔结构,对比相同实验条件下利用聚谷氨酸钠作为模板得到微孔二氧化硅的结果,进一步说明聚谷氨酸钠的刚性二级结构是制造微孔结构的模板。此外,在合成PAA/SiO2复合纳米球的体系中,加入不同量的有机溶剂THF能够对复合球的形貌产生影响。在合成PAA/SiO2复合纳米球的体系中,通过引入阴离子表面活性剂Sar-Na控制合成了超微孔结构二氧化硅,BET表面积761 m2/g,孔体积0.57 cm3/g,通过MP方法计算得到孔径为1.2 nm。3.设计合成双亲性嵌段共聚物聚乙二醇-聚L-苯丙氨酸,利用固体NMR技术研究其相分离结构、构像、结晶性及微区分子运动。通过1H CRAMPS和13C CPMAS TOSS固体高分辨NMR实验发现随多肽链长的减小,嵌段共聚物中的多肽链的α-螺旋构象逐渐减少,无定形的多肽结构增加,同时PEG的结晶度逐渐增加。采用1H偶极滤波自旋扩散NMR实验测定了不同多肽链长下的嵌段共聚物中的PEG非晶区的相区尺寸。发现随着肽链长的减小,PEG由于结晶度的提高使非晶区的相区尺寸明显减小。综合采用偶极滤波、双量子滤波、2D WISE和2D LG-CP多种固体NMR实验技术详细研究了嵌段共聚物中的多肽链及PEG链段的分子运动特性。发现在嵌段共聚物中的多肽链段由于有α螺旋构象的存在而非常刚性,但也有很少量靠近嵌段点附近的氨基酸受PEG影响而运动较快。非晶区PEG本身运动很快,但也发现少量的嵌段点附近的PEG受嵌段多肽的影响而变得较刚性。4.利用蒸发诱导自组装方法(Evaporation-Induced Self-Assembly,EISA),分别以聚氨基酸聚γ-谷氨酸苄酯(PBLG)和聚乙二醇-聚L-苯丙氨酸(PEG45-b-Phen)为模板,以硅烷偶联剂苯氨甲基三乙氧基硅烷(AMTS)和正硅酸乙酯(TEOS)为硅源,通过氨基酸侧链苯环与AMTS分子苯环之间的π-π堆积作用,合成了微孔二氧化硅材料。当嵌段共聚物PEG45-b-Phen中苯丙氨酸链段较长时(n=50),能够对二氧化硅的形貌起到很好的控制作用,得到了大小均一,分散性很好的梭形聚合物/二氧化硅复合材料,这种梭形的粒子的长约8μm、中间部位宽约1.6μm。5.利用工业中广泛应用的无毒、低成本、可生物降解的含有氨基酸结构的阴离子表面活性剂N-酰基十二烷基肌氨酸钠(Sar-Na)作为添加剂,分别在水、乙醇、乙醇-水二元体系中,在室温的条件下合成碳酸钙。在水体系中得到球霰石空心球;在乙醇体系中得到球形无定形碳酸钙;在乙醇-水二元体系中合成了花簇状多级结构碳酸钙晶体。在水热条件下,利用N-酰基十二烷基肌氨酸钠(Sar-Na)控制合成了具有较大长径比(aspect ratio)的片状纳米羟基磷灰石晶体(HAP)。调整体系的pH值能够对HAP晶体的形貌产生影响,随着pH值由9.1变化到10.0、11.0、12.0,HAP晶体的形貌由两端较尖锐的长片状变为短棒状,最终变为椭圆形粒子。在Sar-Na调控合成羟基磷灰石的体系中,加入阴离子聚合物PAA,HAP晶体的形貌发生变化,随着PAA添加量的增加,片状形貌逐渐消失,形成无规则形貌的晶体。

论文目录

  • 中文摘要
  • Abstract
  • 第一章 引言
  • 第一节 生物矿化
  • 1.1.1 生物矿化概述
  • 1.1.2 生物矿化的控制机理
  • 1.1.3 生物矿化的过程和产物
  • 第二节 材料的生物启发合成
  • 1.2.1 生物启发合成的基本方法
  • 1.2.2 生物大分子调控材料的生物启发合成
  • 1.2.3 亲水聚合物调控材料的生物启发合成
  • 1.2.4 表面活性剂为模板控制材料的生物启发合成
  • 1.2.5 小分子添加剂调控材料的生物启发合成
  • 第三节 论文选题的意义和依据
  • 参考文献
  • 第二章 实验部分
  • 第一节 试剂
  • 第二节 药品及有机溶剂的预处理
  • 第三节 实验仪器和装置
  • 第四节 表征仪器
  • 第三章 阴离子聚合物调控二氧化硅的仿生合成
  • 第一节 聚L-谷氨酸的合成
  • 第二节 聚L-谷氨酸调控合成二氧化硅
  • 3.2.1 微孔二氧化硅的合成
  • 3.2.2 溶剂效应导致的介孔二氧化硅合成
  • 第三节 聚丙烯酸控制合成二氧化硅
  • 3.3.1 聚丙烯酸-二氧化硅纳米复合物的合成
  • 3.3.2 有机溶剂对聚丙烯酸-二氧化硅复合材料的影响
  • 3.3.3 阴离子表面活性剂和PAA共同作用合成二氧化硅
  • 第四节 本章小结
  • 参考文献
  • 第四章 聚氨基酸调控合成二氧化硅材料
  • 第一节 聚乙二醇-聚L-苯丙氨酸嵌段共聚物的合成
  • 4.1.1 实验部分
  • 4.1.2 结果与讨论
  • 4.1.3 小结
  • 第二节 聚乙二醇-聚苯丙氨酸双嵌段共聚物结构与动力学的固体NMR研究
  • 4.2.1 SSNMR实验部分
  • 4.2.2 聚乙二醇对聚苯丙氨酸嵌段二级结构的影响
  • 4.2.3 聚乙二醇-聚苯丙氨酸双嵌段共聚物的微相结构研究
  • 4.2.4 聚乙二醇-聚苯丙氨酸双嵌段共聚物的动力学研究
  • 4.2.5 本节小结
  • 第三节 聚氨基酸调控合成微孔二氧化硅
  • 4.3.1 聚γ-谷氨酸苄酯调控合成微孔二氧化硅
  • 4.3.2 聚乙二醇-聚L-苯丙氨酸调控合成微孔二氧化硅
  • 第四节 本章小结
  • 参考文献
  • 第五章 阴离子氨基酸表面活性剂调控碳酸钙、羟基磷灰石的合成
  • 第一节 碳酸钙的仿生合成
  • 5.1.1 水溶液中碳酸钙的仿生合成
  • 5.1.2 乙醇溶液中碳酸钙的可控合成
  • 5.1.3 乙醇-水混合溶液中碳酸钙的合成
  • 第二节 纳米羟基磷灰石的仿生合成
  • 5.2.1 羟基磷灰石纳米片的合成
  • 5.2.2 不同反应条件下合成纳米羟基磷灰石
  • 第三节 本章小结
  • 参考文献
  • 第六章 全文总结
  • 致谢
  • 个人简历、在学期间发表的学术论文与研究成果
  • 相关论文文献

    • [1].《合成语言——矛盾与和谐》[J]. 美苑 2015(S1)
    • [2].合成的曝光照[J]. 科学启蒙 2011(Z1)
    • [3].奇怪的动物[J]. 初中生之友 2008(Z1)
    • [4].世界首棵“合成树”[J]. 少儿科技 2008(10)
    • [5].Hemetsberger吲哚合成法研究进展[J]. 化学试剂 2014(05)
    • [6].陆军合成营参谋训练[J]. 国防科技 2019(02)
    • [7].论大数据背景下的侦查合成作战[J]. 湖南警察学院学报 2019(01)
    • [8].关于6-氟4-色满酮-2-羧酸的合成分析[J]. 赤峰学院学报(自然科学版) 2017(21)
    • [9].Φ1200合成塔异常剧烈振动的原因及处理[J]. 化工设计通讯 2010(03)
    • [10].基于P2P的本体驱动Web服务合成研究[J]. 计算机时代 2010(09)
    • [11].MC-1586的合成[J]. 浙江化工 2018(04)
    • [12].三草酸合铁(Ⅲ)酸钾的合成方法研究[J]. 内蒙古石油化工 2017(01)
    • [13].钻石与合成钻石的鉴定[J]. 文物鉴定与鉴赏 2016(09)
    • [14].苯并噻唑的合成研究进展[J]. 山东化工 2015(20)
    • [15].合成生物学研究的里程碑[J]. 前沿科学 2018(01)
    • [16].Cr-MIL-101-NH_2的手性后合成修饰[J]. 无机化学学报 2017(05)
    • [17].荧光粉的合成与应用简介[J]. 商 2015(41)
    • [18].只要能够想到 就能合成创造 来自合成生物学的诱惑[J]. 科技潮 2012(03)
    • [19].植物介导合成的银纳米粒子抗肿瘤活性研究进展[J]. 国际药学研究杂志 2020(02)
    • [20].“合成生物学”研究前沿与发展趋势[J]. 科学大众(科学教育) 2019(03)
    • [21].HFO-1234ze合成技术及应用研究进展[J]. 有机氟工业 2018(03)
    • [22].几类常用防老剂的合成路线及工业应用[J]. 塑料助剂 2014(06)
    • [23].高分子材料燃烧合成技术探析[J]. 科学大众(科学教育) 2015(07)
    • [24].论信息化条件下的侦查合成战[J]. 铁道警官高等专科学校学报 2012(01)
    • [25].基于P2P的Web服务合成中的关键问题[J]. 微计算机信息 2008(12)
    • [26].《合成技术及应用》2019年第34卷总目录[J]. 合成技术及应用 2019(04)
    • [27].智慧警务背景下合成作战机制的实践与完善——以S市D区公安分局“云战中心”为探析对象[J]. 江西警察学院学报 2020(03)
    • [28].依匹哌唑的合成研究进展[J]. 合成化学 2018(06)
    • [29].英国合成生物学路线图[J]. 全球科技经济瞭望 2013(08)
    • [30].合成条件对粉煤灰合成沸石除磷特性的影响[J]. 环境工程学报 2016(03)

    标签:;  ;  ;  ;  ;  ;  ;  ;  ;  

    基于聚合物及阴离子表面活性剂的材料组装合成
    下载Doc文档

    猜你喜欢