三叶半夏(Pinellia ternata(Thunb.)Breit.)组培标准化研究及生物反应器扩繁

三叶半夏(Pinellia ternata(Thunb.)Breit.)组培标准化研究及生物反应器扩繁

论文摘要

三叶半夏(Pinellia ternata (Thunb.)Breit.)为天南星科半夏属植物,用药史已有2000多年,是我国最常用的传统中药材之一。本论文通过人为划分生长时期和对组织培养过程的优化,对操作流程进行了规范化和标准化研究。并针对传统组织培养耗费大量人力物力的缺点,设计组装了间歇浸没培养反应器,并对三叶半夏进行了初步的培养实验,期望为三叶半夏的大规模自动化生产提供一条新的途径。1.组培标准体系的建立:三叶半夏组培操作标准流程如下:叶柄经75%酒精处理20 s,升汞处理8 min,接种入Ms+6-BA1.0 mg/L+NAA0.05 mg/L+蔗糖3%+琼脂5.0 g/L的培养基诱导愈伤及丛生芽,待其生长至“叶柄伸长期”时切割为单个芽转接至Ms+6-BA1.0 mg/L+NAA0.02 mg/L+蔗糖3%+琼脂5.0g/L的培养基中进行增殖。于栽种季节,取“叶片成熟期”丛生芽接种至1/2Ms+IBA0.03 mg/L+NAA0.01 mg/L+蔗糖3%+琼脂5.0 g/L+AC 0.3 g/L的培养基中诱导生根,30 d后炼苗移栽。如不宜栽种,将“叶片增殖期”的丛生芽接种至1/2Ms+IBA0.03 mg/L+NAA0.01 mg/L+蔗糖5%+琼脂5.0 g/L+AC 0.3 g/L培养基,生根苗在瓶内倒苗得到离体块茎。离体块茎可在瓶内长期储存,栽种时将其洗净,即可播种。2.间歇浸没培养反应器设计组装及培养半夏的研究:设计了一种间歇浸没培养反应器,并进行组装,试运行稳定。随后利用反应器对半夏扩繁进行了研究。一方面通过对生物量、增殖系数、组培苗状态、保卫细胞和叶绿体个数等各方面对比,研究了不同外植体在反应器内的生长情况。实验得到以丛生芽和叶柄为外植体时每个反应器产生的组培苗数目分别为1957棵和1382棵,增殖系数达到39.15和27.65。且以叶柄为外植体得到的组培苗较为健壮,为适合反应器的外植体类型。另一方面以叶柄为外植体,对反应器间歇浸没培养和传统固体培养以及液体摇瓶培养的组培苗进行了对比。间歇浸没反应器的增殖系数为24.73,固体培养为14.75,液体摇瓶培养为12.26;组培苗形态方面固体培养得到的苗最为健壮;叶绿体个数方面固体培养及反应器培养无差别,优于液体摇瓶培养。由此可见相对于传统的固体培养,反应器培养半夏具有增殖系数高,只需一次接种,并且培养基更换方便,自动化程度高的优点。因此间歇浸没培养反应器完全可用于三叶半夏组培苗的生产。

论文目录

  • 摘要
  • Abstract
  • 插图目录
  • 表格目录
  • 符号及缩写词(ABBREVIATIONS)
  • 第一部分 文献综述
  • 第一章 三叶半夏及生物反应器研究进展
  • 1.1 三叶半夏概述
  • 1.2 三叶半夏生物学特征
  • 1.3 三叶半夏药用生产时所面临的问题
  • 1.3.1 病虫害严重
  • 1.3.2 品种退化导致品质及产量降低
  • 1.3.3 野生资源减少且种植产量低不能满足需求
  • 1.4 半夏组织培养研究进展
  • 1.4.1 半夏组培快繁研究
  • 1.4.1.1 外植体的选择
  • 1.4.1.2 激素种类的选择
  • 1.4.1.3 生根及炼苗移栽
  • 1.4.1.4 一步成苗法
  • 1.4.1.5 组培选育优良品种
  • 1.4.2 悬浮细胞培养及胚状体和体细胞胚诱导
  • 1.4.2.1 悬浮细胞培养
  • 1.4.2.2 胚状体及体胚诱导
  • 1.4.3 人工种子
  • 1.5 生物反应器培养研究进展
  • 1.5.1 生物反应器种类
  • 1.5.2 间歇浸没反应器种类
  • 1.5.3 间歇浸没反应器应用于植物培养
  • 第二部分 实验研究部分
  • 第二章 三叶半夏组培标准体系的建立
  • 前言
  • 2.1 材料与实验方法
  • 2.1.1 实验材料
  • 2.1.2 实验方法
  • 2.1.2.1 不同外植体灭菌
  • 2.1.2.2 丛生芽诱导优化
  • 2.1.2.3 组培苗生长时期的的人为划分
  • 2.1.2.4 丛生芽增殖优化
  • 2.1.2.5 生长时期以及糖浓度对生根及离体块茎生成的影响
  • 2.1.2.6 储藏条件对离体块茎的萌发的影响
  • 2.1.2.7 数据统计分析
  • 2.2 结果与分析
  • 2.2.1 外植体灭菌方式
  • 2.2.2 丛生芽诱导优化
  • 2.2.3 丛生芽增殖优化
  • 2.2.3.1 切割方式及生长时期对增殖倍数的影响
  • 2.2.3.2 继代培养优化
  • 2.2.4 生根及离体块茎诱导
  • 2.2.4.1 生长时期和糖浓度对生根及苗状态的影响
  • 2.2.4.2 生长时期和糖浓度对块茎的影响
  • 2.2.5 储藏条件对离体块茎萌发的影响
  • 2.3 小结与讨论
  • 第三章 间歇浸没植物组织器官的培养反应器设计及组装
  • 前言
  • 3.1 间歇浸没植物组织器官的培养反应器设计及原理介绍
  • 3.1.1 设计及各部件构造
  • 3.1.2 工作原理及过程
  • 3.2 间歇浸没植物组织器官的培养反应器各部件定制及组装
  • 3.2.1 反应器各部件定制
  • 3.2.2 反应器的组装
  • 3.3 间歇浸没植物组织器官的培养反应器性能测定
  • 3.3.1 反应器参数设定
  • 3.3.2 反应器性能测定
  • 3.4 小结与讨论
  • 第四章 利用间歇浸没培养反应器快繁三叶半夏的研究
  • 前言
  • 4.1 材料与方法
  • 4.1.1 实验材料
  • 4.1.2 实验方法
  • 4.1.2.1 不同类型的外植体在反应器内培养
  • 4.1.2.2 叶柄为外植体在不同培养方式下的生长情况
  • 4.1.2.3 利用反应器生产的组培苗的种植
  • 4.1.2.4 实验数据分析
  • 4.2 结果与分析
  • 4.2.1 反应器培养不同的外植体
  • 4.2.1.1 不同外植体在反应器内增殖状况比较
  • 4.2.1.2 组培苗形态方面比较
  • 4.2.1.3 反应器内生长状态及丛生芽外观形态
  • 4.2.2 叶柄为外植体在不同培养方式下的生长情况
  • 4.2.2.1 不同培养方式愈伤组织诱导情况
  • 4.2.2.2 不同培养方式增殖状况比较
  • 4.2.2.3 组培苗形态比较
  • 4.2.2.4 叶柄在反应器内不同生长时期状态观察
  • 4.2.3 反应器生产的组培苗种植
  • 4.3 小结与讨论
  • 总结
  • 参考文献
  • 致谢
  • 附录
  • 攻读学位期间的研究成果
  • 相关论文文献

    • [1].Stable solutions for q bound states with a regularized Breit potential[J]. 中国物理C 2009(08)
    • [2].Spin-dependent Breit-Wigner and Fano resonances in photon-assisted electron transport through a semiconductor heterostructure[J]. Chinese Physics B 2011(06)
    • [3].Effects of electron correlation and the Breit interaction on one- and two-electron one-photon transitions in double K hole states of He-like ions(10 ≤ Z ≤ 47)[J]. Chinese Physics B 2020(03)
    • [4].组态相互作用和Breit相互作用对类氖离子2p-3s碰撞激发特性的影响[J]. 原子与分子物理学报 2017(01)
    • [5].Pole Analysis on Unitarized SU(3) × SU(3) One Loop χPT Amplitudes[J]. Communications in Theoretical Physics 2012(05)
    • [6].Meson spectra governed by the Fermi-Breit potential[J]. 中国物理C 2009(03)
    • [7].Systematical Study on Ground-State Ionization Potentials for Boron and Carbon Isoelectronic Sequences with Z=6-42[J]. Communications in Theoretical Physics 2010(11)
    • [8].Breit相互作用对类氦离子亚稳态1s2s ~3S_1电子碰撞激发截面的影响[J]. 物理学报 2008(05)
    • [9].Pole Analysis of Unitarized One Loop χ PT Amplitudes——A Triple Channel Study[J]. Communications in Theoretical Physics 2012(09)
    • [10].A mathematical solution for the parameters of three interfering resonances[J]. Chinese Physics C 2018(04)
    • [11].Theoretical study on K,L,and M X-ray transition energies and rates of neptunium and its ions[J]. Chinese Physics B 2014(02)
    • [12].Breit相互作用和QED效应对铬离子K_αX射线的影响[J]. 西北师范大学学报(自然科学版) 2010(04)
    • [13].Breit夸克势模型与介子质量[J]. 科技展望 2016(35)
    • [14].Theoretical study of deactivation and isomerization pathways of 1,2-dithiete in excited electronic states[J]. Science in China(Series B:Chemistry) 2009(08)
    • [15].Bounds on the magnetic moment of the τ-neutrino via the process e~+e-→νγ[J]. 中国物理C 2008(08)
    • [16].三叶半夏(Pinellia ternata(Thunb.)Breit)的间歇浸没培养[J]. 中国生物工程杂志 2012(11)
    • [17].Breit夸克势的不同次正规化与η_c-J/ψ等的质量劈裂[J]. 物理学报 2016(04)
    • [18].Breit势的正规化与η_c-J/ψ的劈裂[J]. 原子核物理评论 2009(04)
    • [19].Forbidden transition properties of fine-structure 2p~3 ~4S_(3/2)–2p~3 ~2D_(3/2,5/2) for nitrogen-like ions[J]. Chinese Physics B 2018(08)
    • [20].Effect of Different Cultivation Methods on Yield and Lodge Rate of Pinellia ternata(Thunb.) Breit.[J]. Medicinal Plant 2010(11)
    • [21].坐标空间中构造的Breit夸克势与介子和夸克偶素的质量劈裂[J]. 物理学报 2018(09)
    • [22].KLL dielectronic recombination process of He-like to O-like xenon ions[J]. Chinese Physics B 2012(01)
    • [23].Relativistic calculations of 3s~2 ~1S_0-3s3p ~1P_1 and 3s~2 ~1S_0-3s3p ~3P_(1,2) transition probabilities in the Mg isoelectronic sequence[J]. Chinese Physics B 2011(03)
    • [24].Fano Effect and Anti-Resonance Band in a Parallel-Coupled Double Quantum Dot System with Two Multi-Quantum Dot Chains[J]. Chinese Physics Letters 2018(09)
    • [25].RAPD Analysis on Genetic Diversity of Pinellia ternata(Thunb.)Breit in Different Populations[J]. Medicinal Plant 2014(06)
    • [26].Survey on Pinellia ternata (Thunb.) Breit.Resource in China[J]. Medicinal Plant 2012(08)
    • [27].Observation of a p mass threshold enhancement in ψ′→π+π-J/ψ(J/ψ→γp) decay[J]. 中国物理C 2010(04)
    • [28].Primary Survey of the Optimal Harvesting Period of Pinellia ternata (Thunb.) Breit.[J]. Medicinal Plant 2012(11)
    • [29].Optimization of Extraction Process of Pinellia ternate(Thunb. ) Breit. Polysaccharide and Its Scavenging Effect on Radical[J]. Medicinal Plant 2010(09)
    • [30].Finite temperature effect in infrared-improved AdS/QCD model with back reaction of bulk vacuum[J]. Chinese Physics C 2016(06)

    标签:;  ;  ;  ;  

    三叶半夏(Pinellia ternata(Thunb.)Breit.)组培标准化研究及生物反应器扩繁
    下载Doc文档

    猜你喜欢