邵宝力:基于格子Boltzmann的多孔介质内多场耦合流动与传热模拟论文

邵宝力:基于格子Boltzmann的多孔介质内多场耦合流动与传热模拟论文

本文主要研究内容

作者邵宝力(2019)在《基于格子Boltzmann的多孔介质内多场耦合流动与传热模拟》一文中研究指出:石油化工行业中油气运移、聚集、开采、集输、加工、储存运输等都涉及到复杂的油气流动与传热问题。地层中的油气运移过程、油气的加工及储存运输过程等很多环节都涉及到多相流动与传热问题,对其机理的探究在石油钻井、油气开发等领域越来越重要。油层岩石是典型的多孔介质,其内部结构复杂,导致多孔介质内多相流体的流动和传热过程非常复杂,到目前为止人们还不能完全掌握多孔介质内的传热及流动规律。格子Boltzmann方法(Lattice Boltzmann Method,LBM)作为一种介尺度的数值模拟方法,经过几十年的研究与发展,其基本理论、基本模型均得以发展和完善。利用LBM在处理复杂边界问题时的独特优势,研究多孔介质内的流动和传热问题,能够达到准确、有效、适用性强的效果,为准确模拟油藏岩石中多相流动与传热过程,揭示油层中流场与温度场的分布规律提供技术参考与理论依据。根据LBM的单松弛时间(SRT)法构建多孔介质内的流体流动模型。采用有限体积颗粒(FSP)法构造多孔介质骨架及可移动的悬浮颗粒,流体与固体骨架采用反弹格式,使用动量交换法处理流体和悬浮颗粒的相互作用。根据多组分DDF方法构建了多孔介质内流动与传热的双分布函数格子Boltzmann模型。使用周期性边界格式、反弹格式、非平衡态外推格式等方法处理压力、速度、无滑移等流动边界以及等温、绝热等热边界条件。以有限体积颗粒法构造的球形颗粒作为多孔介质骨架,采用LBM对油水混合物在多孔介质内的渗流行为进行研究。通过模拟Poiseuille流动及分析多孔介质内流体在线性区、过渡区和强惯性区的渗流规律验证模型,将模拟结果与实验结果、渗流基本公式及采用多松弛时间(MRT)方法的模拟结果进行对比,结果表明所建模型的精度和稳定性能够进行油层内多孔介质渗流的模拟。对不同进出口压差下的渗流进行模拟计算,分析线性区、过渡区和强惯性区内流动行为随Re的变化,在不同流型区域对雷诺应力和粘性应力的影响进行了比较,结果表明:在线性区粘性应力远大于雷诺应力,在过渡区二者相当,在强惯性区雷诺应力大于粘性应力;雷诺应力随Re的增加而增加,孔隙介质结构对雷诺应力的影响随着Re的增大而减小。模拟原油含水率对多孔介质渗流的影响,结果表明:在相同的进出口压差下随着含水率的增加,渗流速度降低;随着进出口压差的增大,渗流速度随含水率降低的幅度减小(原油含水率由0.0增加到0.5,△P=100 Pa时,速度降低了53.4%,△P=5000 Pa时,速度降低了46.9%,△P=30000 Pa时,速度降低了30.8%),说明在线性区、过渡区和强惯性区内原油含水率对渗流行为的影响不同。构建多孔介质内流体流动与传热的FSP-DDF耦合模型,通过二维方腔(Ra≤10~6,误差在1%以内,Ra≥10~7,误差在4%以内)和三维立方体自然对流验证模型的流动边界和热边界条件,模拟了恒温固定热颗粒周围流体的热扩散过程。采用FSP-DDF耦合模型模拟了多孔介质孔隙尺度的流体流动和传热过程,得到了复杂多孔介质内详细的温度分布和速度分布情况,并且研究了渗流速度对流动与传热过程的影响,结果表明:由多孔介质结构引起的速度波动随着Re的增加而增大,流体温度的轴向分布在强惯性区,会随着渗流速度的增加出现明显的波动。分析了原油含水率对多孔介质内流体温度分布的影响,在线性区和过渡区,流体温度随含水率的变化较为均匀,在强惯性区,含水率越高,对流体温度分布的影响越大。获得了油层孔隙内沉积颗粒数量对渗流与传热的影响规律,流体在相同的质量力作用下,在以对流传热为主导的热量传递过程中,导热对传热效果的影响要弱于对流传热的影响,且随着孔隙内颗粒数量的增加,总体的传热效果降低。建立流体和动颗粒的相互作用模型,研究固体颗粒在孔隙内的沉降与传热规律。首先,通过单个球形颗粒在无限边界均匀流场中的受力情况分析,计算不同Re下曳力系数,并与实验结果进行对比,良好吻合。其次,研究单颗粒随流体通过平直孔隙的过程,结果表明颗粒沉降距离随颗粒直径(50~200μm)的增加而减小,随流体速度增加而变大,随着固体-流体密度比(1.2~3.0)的增加而减小。对初始时刻双颗粒相对位置不同的四种情况进行模拟计算,结果表明:颗粒的位置不同,对于颗粒的沉降有较大影响,颗粒沉降受入口及出口效应影响,同时与流体的速度及颗粒的垂直位置有关。研究颗粒在弯曲孔隙内的沉降问题,结果表明颗粒在弯曲孔隙内的运动受入口和出口效应以及壁面起伏的影响。对初始时刻双颗粒不同相对位置进行传热过程分析,表明颗粒温度的变化主要取决于颗粒的垂直位置,以及在不同垂直位置所停留的时间。最后,对多颗粒在弯曲孔隙内随流体的运动与传热过程进行了模拟,结果表明:颗粒的存在对温度场会产生一定的扰动,有颗粒存在的地方,温度变化不再均匀,同时一定程度上强化了传热;随着时间的变化,温度分布由初始状态,经过不稳定过程,最终达到稳态的整个过程,颗粒对温度分布的影响在逐渐减小。

Abstract

dan you hua gong hang ye zhong you qi yun yi 、ju ji 、kai cai 、ji shu 、jia gong 、chu cun yun shu deng dou she ji dao fu za de you qi liu dong yu chuan re wen ti 。de ceng zhong de you qi yun yi guo cheng 、you qi de jia gong ji chu cun yun shu guo cheng deng hen duo huan jie dou she ji dao duo xiang liu dong yu chuan re wen ti ,dui ji ji li de tan jiu zai dan you zuan jing 、you qi kai fa deng ling yu yue lai yue chong yao 。you ceng yan dan shi dian xing de duo kong jie zhi ,ji nei bu jie gou fu za ,dao zhi duo kong jie zhi nei duo xiang liu ti de liu dong he chuan re guo cheng fei chang fu za ,dao mu qian wei zhi ren men hai bu neng wan quan zhang wo duo kong jie zhi nei de chuan re ji liu dong gui lv 。ge zi Boltzmannfang fa (Lattice Boltzmann Method,LBM)zuo wei yi chong jie che du de shu zhi mo ni fang fa ,jing guo ji shi nian de yan jiu yu fa zhan ,ji ji ben li lun 、ji ben mo xing jun de yi fa zhan he wan shan 。li yong LBMzai chu li fu za bian jie wen ti shi de du te you shi ,yan jiu duo kong jie zhi nei de liu dong he chuan re wen ti ,neng gou da dao zhun que 、you xiao 、kuo yong xing jiang de xiao guo ,wei zhun que mo ni you cang yan dan zhong duo xiang liu dong yu chuan re guo cheng ,jie shi you ceng zhong liu chang yu wen du chang de fen bu gui lv di gong ji shu can kao yu li lun yi ju 。gen ju LBMde chan song chi shi jian (SRT)fa gou jian duo kong jie zhi nei de liu ti liu dong mo xing 。cai yong you xian ti ji ke li (FSP)fa gou zao duo kong jie zhi gu jia ji ke yi dong de xuan fu ke li ,liu ti yu gu ti gu jia cai yong fan dan ge shi ,shi yong dong liang jiao huan fa chu li liu ti he xuan fu ke li de xiang hu zuo yong 。gen ju duo zu fen DDFfang fa gou jian le duo kong jie zhi nei liu dong yu chuan re de shuang fen bu han shu ge zi Boltzmannmo xing 。shi yong zhou ji xing bian jie ge shi 、fan dan ge shi 、fei ping heng tai wai tui ge shi deng fang fa chu li ya li 、su du 、mo hua yi deng liu dong bian jie yi ji deng wen 、jue re deng re bian jie tiao jian 。yi you xian ti ji ke li fa gou zao de qiu xing ke li zuo wei duo kong jie zhi gu jia ,cai yong LBMdui you shui hun ge wu zai duo kong jie zhi nei de shen liu hang wei jin hang yan jiu 。tong guo mo ni Poiseuilleliu dong ji fen xi duo kong jie zhi nei liu ti zai xian xing ou 、guo du ou he jiang guan xing ou de shen liu gui lv yan zheng mo xing ,jiang mo ni jie guo yu shi yan jie guo 、shen liu ji ben gong shi ji cai yong duo song chi shi jian (MRT)fang fa de mo ni jie guo jin hang dui bi ,jie guo biao ming suo jian mo xing de jing du he wen ding xing neng gou jin hang you ceng nei duo kong jie zhi shen liu de mo ni 。dui bu tong jin chu kou ya cha xia de shen liu jin hang mo ni ji suan ,fen xi xian xing ou 、guo du ou he jiang guan xing ou nei liu dong hang wei sui Rede bian hua ,zai bu tong liu xing ou yu dui lei nuo ying li he nian xing ying li de ying xiang jin hang le bi jiao ,jie guo biao ming :zai xian xing ou nian xing ying li yuan da yu lei nuo ying li ,zai guo du ou er zhe xiang dang ,zai jiang guan xing ou lei nuo ying li da yu nian xing ying li ;lei nuo ying li sui Rede zeng jia er zeng jia ,kong xi jie zhi jie gou dui lei nuo ying li de ying xiang sui zhao Rede zeng da er jian xiao 。mo ni yuan you han shui lv dui duo kong jie zhi shen liu de ying xiang ,jie guo biao ming :zai xiang tong de jin chu kou ya cha xia sui zhao han shui lv de zeng jia ,shen liu su du jiang di ;sui zhao jin chu kou ya cha de zeng da ,shen liu su du sui han shui lv jiang di de fu du jian xiao (yuan you han shui lv you 0.0zeng jia dao 0.5,△P=100 Pashi ,su du jiang di le 53.4%,△P=5000 Pashi ,su du jiang di le 46.9%,△P=30000 Pashi ,su du jiang di le 30.8%),shui ming zai xian xing ou 、guo du ou he jiang guan xing ou nei yuan you han shui lv dui shen liu hang wei de ying xiang bu tong 。gou jian duo kong jie zhi nei liu ti liu dong yu chuan re de FSP-DDFou ge mo xing ,tong guo er wei fang qiang (Ra≤10~6,wu cha zai 1%yi nei ,Ra≥10~7,wu cha zai 4%yi nei )he san wei li fang ti zi ran dui liu yan zheng mo xing de liu dong bian jie he re bian jie tiao jian ,mo ni le heng wen gu ding re ke li zhou wei liu ti de re kuo san guo cheng 。cai yong FSP-DDFou ge mo xing mo ni le duo kong jie zhi kong xi che du de liu ti liu dong he chuan re guo cheng ,de dao le fu za duo kong jie zhi nei xiang xi de wen du fen bu he su du fen bu qing kuang ,bing ju yan jiu le shen liu su du dui liu dong yu chuan re guo cheng de ying xiang ,jie guo biao ming :you duo kong jie zhi jie gou yin qi de su du bo dong sui zhao Rede zeng jia er zeng da ,liu ti wen du de zhou xiang fen bu zai jiang guan xing ou ,hui sui zhao shen liu su du de zeng jia chu xian ming xian de bo dong 。fen xi le yuan you han shui lv dui duo kong jie zhi nei liu ti wen du fen bu de ying xiang ,zai xian xing ou he guo du ou ,liu ti wen du sui han shui lv de bian hua jiao wei jun yun ,zai jiang guan xing ou ,han shui lv yue gao ,dui liu ti wen du fen bu de ying xiang yue da 。huo de le you ceng kong xi nei chen ji ke li shu liang dui shen liu yu chuan re de ying xiang gui lv ,liu ti zai xiang tong de zhi liang li zuo yong xia ,zai yi dui liu chuan re wei zhu dao de re liang chuan di guo cheng zhong ,dao re dui chuan re xiao guo de ying xiang yao ruo yu dui liu chuan re de ying xiang ,ju sui zhao kong xi nei ke li shu liang de zeng jia ,zong ti de chuan re xiao guo jiang di 。jian li liu ti he dong ke li de xiang hu zuo yong mo xing ,yan jiu gu ti ke li zai kong xi nei de chen jiang yu chuan re gui lv 。shou xian ,tong guo chan ge qiu xing ke li zai mo xian bian jie jun yun liu chang zhong de shou li qing kuang fen xi ,ji suan bu tong Rexia ye li ji shu ,bing yu shi yan jie guo jin hang dui bi ,liang hao wen ge 。ji ci ,yan jiu chan ke li sui liu ti tong guo ping zhi kong xi de guo cheng ,jie guo biao ming ke li chen jiang ju li sui ke li zhi jing (50~200μm)de zeng jia er jian xiao ,sui liu ti su du zeng jia er bian da ,sui zhao gu ti -liu ti mi du bi (1.2~3.0)de zeng jia er jian xiao 。dui chu shi shi ke shuang ke li xiang dui wei zhi bu tong de si chong qing kuang jin hang mo ni ji suan ,jie guo biao ming :ke li de wei zhi bu tong ,dui yu ke li de chen jiang you jiao da ying xiang ,ke li chen jiang shou ru kou ji chu kou xiao ying ying xiang ,tong shi yu liu ti de su du ji ke li de chui zhi wei zhi you guan 。yan jiu ke li zai wan qu kong xi nei de chen jiang wen ti ,jie guo biao ming ke li zai wan qu kong xi nei de yun dong shou ru kou he chu kou xiao ying yi ji bi mian qi fu de ying xiang 。dui chu shi shi ke shuang ke li bu tong xiang dui wei zhi jin hang chuan re guo cheng fen xi ,biao ming ke li wen du de bian hua zhu yao qu jue yu ke li de chui zhi wei zhi ,yi ji zai bu tong chui zhi wei zhi suo ting liu de shi jian 。zui hou ,dui duo ke li zai wan qu kong xi nei sui liu ti de yun dong yu chuan re guo cheng jin hang le mo ni ,jie guo biao ming :ke li de cun zai dui wen du chang hui chan sheng yi ding de rao dong ,you ke li cun zai de de fang ,wen du bian hua bu zai jun yun ,tong shi yi ding cheng du shang jiang hua le chuan re ;sui zhao shi jian de bian hua ,wen du fen bu you chu shi zhuang tai ,jing guo bu wen ding guo cheng ,zui zhong da dao wen tai de zheng ge guo cheng ,ke li dui wen du fen bu de ying xiang zai zhu jian jian xiao 。

论文参考文献

  • [1].煤层气运移格子Boltzmann模型及层间干扰模拟研究[D]. 赵岩龙.中国石油大学(北京)2018
  • [2].基于格子Boltzmann方法的页岩气微观流动机理研究[D]. 任俊杰.西南石油大学2015
  • 读者推荐
  • [1].面向储热的纳米复合相变材料熔化传热特性实验研究[D]. 朱子钦.浙江大学2018
  • [2].纳米复合隔热材料高温耦合传热实验测量及物性参数辨识[D]. 刘华.哈尔滨工业大学2017
  • [3].基于碳纳米管的新型热管吸液芯传热与毛细流动特性研究[D]. 陈强.上海交通大学2017
  • [4].纳米流体强化传热机理的格子Boltzmann方法研究[D]. 汪垒.华中科技大学2017
  • [5].真空闪蒸喷雾冷却传热特性研究[D]. 彭钰航.中国科学技术大学2018
  • [6].复合相变储能材料的传热特性研究[D]. 黄欣鹏.东南大学2018
  • [7].泡沫多孔材料中强制对流与高温辐射的耦合传热研究[D]. 陈学.哈尔滨工业大学2016
  • [8].基于孔隙尺度的多孔介质流动与传热机理研究[D]. 赵凯.南京理工大学2010
  • [9].毛细泵回路流动与换热机理研究[D]. 钱吉裕.南京理工大学2005
  • 论文详细介绍

    论文作者分别是来自东北石油大学的邵宝力,发表于刊物东北石油大学2019-07-15论文,是一篇关于多孔介质论文,格子方法论文,多相流论文,多场耦合论文,数值模拟论文,东北石油大学2019-07-15论文的文章。本文可供学术参考使用,各位学者可以免费参考阅读下载,文章观点不代表本站观点,资料来自东北石油大学2019-07-15论文网站,若本站收录的文献无意侵犯了您的著作版权,请联系我们删除。

    标签:;  ;  ;  ;  ;  ;  

    邵宝力:基于格子Boltzmann的多孔介质内多场耦合流动与传热模拟论文
    下载Doc文档

    猜你喜欢