论文摘要
保卫细胞通过调节气孔运动控制植物与环境间的水分和气体交换。内源因素和外界因子均调控气孔运动。目前植物激素脱落酸对气孔运动的调控研究较为详尽,但细胞分裂素和生长素调控气孔运动的研究却欠深入。已有资料表明促细胞分裂原蛋白激酶(MAPKs)和钙依赖型蛋白激酶(CDPKs)也参与气孔运动,但详细机制仍未明确。最近10多年以来,过氧化氢(H2O2)和一氧化氮(NO)作为植物“第二信使”的研究已经成为逆境生物学的一个重要领域,尤其在植物-病原体和动物-病原体相互作用过程中H2O2和NO作为信号分子的研究已取得了一些进展。许多实验表明,H2O2和NO作为重要的信号分子参与气孔运动调节。我们此前工作证明光/暗调控气孔运动也与H2O2和NO有关,并且二者之间相互对话。迄今为止,仍然未见光/暗调控气孔运动中MAPKs/CDPKs与H2O2/NO、细胞分裂素/生长素与H2O2/NO以及一氧化碳(CO)与H2O2/NO关系的报道。本论文以蚕豆为研究材料,借助药理学方法和激光共聚焦扫描显微镜(LSCM)技术对上述问题进行了探索,主要结果如下:1.暗中一定浓度范围内的细胞分裂素(6-BA,KT 0-0.6μM)和生长素(IAA,NAA 0-10μM)明显诱导气孔开放,且表现浓度依赖效应,其最适浓度分别为0.2和10μM。细胞分裂素和生长素诱导气孔开放与他们能够降低H2O2水平有关。另外,和H2O2的清除剂ASA相类似,细胞分裂素不仅能够逆转外源H2O2引起的气孔关闭和降低胞内H2O2水平,而且能够减少黑暗已经诱导产生的内源H2O2并促进已经关闭的气孔重新开放。然而和H2O2的合成酶NADPH氧化酶的专一性抑制剂二苯基碘(DPI)作用方式类似,生长素既不能降低外源H2O2和黑暗引起的胞内H2O2水平,且不能促进气孔开放。这些结果说明细胞分裂素可能主要通过清除保卫细胞中暗诱导产生的H2O2进而引起气孔开放,而生长素可能通过抑制暗中H2O2生成降低胞内H2O2水平进而促进气孔开放。2.暗中细胞分裂素和生长素也能降低NO水平从而诱导气孔开放。与NO的专一性清除剂cPTIO相似,细胞分裂素不仅能够逆转SNP引起的气孔关闭和降低SNP引起的胞内NO水平,而且能够减少暗诱导已产生的内源NO水平进而促进已经关闭的气孔再开放。和一氧化氮合酶(NOS)的专一性抑制剂L-NAME作用类似,生长素既不能降低SNP和暗引起的胞内H2O2水平的增加,也不能促进SNP和暗诱导关闭的气孔开放。说明细胞分裂素降低暗诱导胞内NO水平可能主要通过清除方式进行,而生长素可能通过抑制NO的生成进而引起气孔开放。3.促细胞分裂原蛋白激酶激酶(MEK)抑制剂PD98059和钙依赖型蛋白激酶(CDPK)专一性抑制剂三氟拉嗪(TFP)都明显降低暗引起的H2O2水平逆转暗诱导气孔关闭,暗示MEK和CDPK参与暗诱导气孔关闭和H2O2产生。进一步的试验证明,与ASA类似而和DPI不一样,PD98059和TFP不仅能够减少光下外源H2O2引起的胞内H2O2水平进而促进气孔开放,而且能够降低暗诱导已产生的H2O2,促进暗诱导已关闭气孔重新开放。这些结果表明MEK和CDPK可能主要通过抑制H2O2的清除酶提高胞内H2O2水平参与暗诱导气孔关闭。当然也不排除MEK和CDPK在H2O2下游起作用的可能性。4.暗中PD98059和TFP明显促进气孔开放,且能降低暗诱导产生的NO。说明MEK和CDPK参与暗诱导NO增加,从而导致气孔关闭。另外,与L-NAME不同,与cPTIO类似,PD98059和TFP能降低光下SNP引起的胞内NO并逆转SNP引起的气孔关闭,也能减少暗诱导已产生的NO,进而引起已关闭气孔重新开放。暗示MEK和CDPK可能主要通过抑制NO的清除系统提高胞内NO水平参与暗诱导气孔关闭,MEK和CDPK在NO下游起作用的可能性也不能排除。5.最近,在动物中研究发现一氧化碳是另一种生理信使或生物活性分子。已有资料表明亚铁血红素加氧酶-1(HO-1,EC 1.14.99.3)能够促进亚铁血红素转变成一氧化碳和胆绿素,并同时有铁的释放。然而对植物中一氧化碳生理作用的了解还很有限。本实验首先探讨了CO在蚕豆气孔运动中的作用。结果表明,与H2O2作用效果相类似,CO的供体高铁血红素(Hematin)能以时间和剂量依赖的方式诱导气孔关闭,CO的气体饱和溶液亦如此,首次证明了CO和H2O2表现出相似的调控气孔运动的效应。我们还发现H2O2清除剂ASA和H2O2合成酶NADPH氧化酶专一性抑制剂二苯基碘(DPI)不仅能够逆转CO引起的气孔关闭还能抑制CO诱导的H2O2荧光,证实了CO引起的气孔关闭确实与保卫细胞中H2O2水平有关。另外,CO/NO清除剂血红蛋白(hemoglobin,Hb),HO-1的抑制剂ZnPPIX,ASA和DPI不但都能够逆转黑暗引起的气孔关闭,而且都能抑制黑暗诱导的保卫细胞H2O2产生。这些结果表明保卫细胞CO水平也许光下低而暗中高;血红素加氧酶-1(HO-1)和NADPH氧化酶分别是保卫细胞CO和H2O2的合成酶源;来源于HO-1的CO介导了黑暗诱导保卫细胞H2O2的积累。6.SNP,Hematin和CO气体饱和溶液均能以时间和剂量依赖方式诱导气孔关闭,说明CO和NO也表现相似效应。我们的结果还显示cPTIO和L-NAME不仅能逆转CO引起的气孔关闭,还能清除CO诱导的NO产生,暗示CO引起的气孔关闭与NO/NOS信使系统有关。另外,CO/NO清除剂Hb和HO-1抑制剂ZnPPIX,cPTIO和L-NAME均逆转暗诱导气孔关闭和NO产生。这些结果表明,保卫细胞CO水平也许像NO一样光下低而暗中高;血红素加氧酶(HO-1)和一氧化氮合酶(NOS)分别是保卫细胞CO和NO的合成酶源;来源于HO-1的CO介导保卫细胞暗诱导NO的积累。综上所述,在结论与展望部分(P.152-FigureⅧ-1),我们还勾勒出了保卫细胞中关于光/暗,cytokinins/auxins,MAPKs/CDPKs,一氧化碳和H2O2/NO的信号转导途径的大致线索。
论文目录
摘要AbstractChapter One.Summarization of LiteratureⅠ-1.The stomata and the guard cellⅠ-2.Light-induced stomatal openingⅠ-3.ABA regulates stomatal movementⅠ-4.Cytokinins and auxins regulate stomatal movementⅠ-4-1.Cytokinins and stomatal movementⅠ-4-2.Auxins and stomatal movementⅠ-5.Hydrogen peroxide and its signalling role in guard cells2O2 in plant'>Ⅰ-5-1.The resource of H2O2 in plant2O2 in plant'>Ⅰ-5-2.The role of H2O2 in plant2O2 as a signal in guard cells'>Ⅰ-5-3.H2O2 as a signal in guard cellsⅠ-6.Nitric oxide and its signalling role in guard cellsⅠ-6-1.The resource of NO in plantⅠ-6-1-1.Nitric oxide synthase(NOS)Ⅰ-6-1-2.Nitrate reductase(NR)Ⅰ-6-1-3.Other enzymatic sources of NOⅠ-6-1-4.Nonenzymatic sources of NOⅠ-6-2.The function of NO in plantⅠ-6-3.NO as a signal in guard cellsⅠ-7.ROS,NO and SA in plant defense responses2O2 and NO signalling and cross-talk in plant cells'>Ⅰ-8.H2O2 and NO signalling and cross-talk in plant cells2O2 and NO signalling in guard cells'>Ⅰ-9.ABA,H2O2 and NO signalling in guard cellsⅠ-10.MAPKs and its signalling networks in guard cellsⅠ-10-1.Biochemical assay of MAPKsⅠ-10-2.Plant MAPKs cascadesⅠ-10-3.The roles of MAPKs in plant responsesⅠ-10-4.MAPKs and ROS in pathogen signallingⅠ-10-5.MAPKs signal pathway in guard cellsⅠ-11.CDPKs and its signalling in guard cellsⅠ-12.Carbon monoxide and its signalling in plantⅠ-12-1.Biogenic sources of COⅠ-12-2.CO production by heme oxygenase enzyme(HO)Ⅰ-12-3.Role of CO in animalsⅠ-12-4.HO-1 and CO in plantsⅠ-13.The intention and significance of this researchChapter Two.The decrease of the hydrogen peroxide levels in guard cells during cytokinin- and auxin-induced stomatal openingⅡ-1.IntroductionⅡ-2.Materials and methodsⅡ-2-1.ChemicalsⅡ-2-2.Plant materialsⅡ-2-3.Stomatal bioassay2DCF-DA'>Ⅱ-2-4.Dye loading of H2DCF-DAⅡ-2-5.Laser-scanning confocal microscopyⅡ-2-6.Statistical analysisⅡ-3.ResultsⅡ-3-1.Both cytokinins and auxins induce stomatal opening in darkness2O2 levels of guard cells in darkness'>Ⅱ-3-2.Both cytokinins and auxins decrease H2O2 levels of guard cells in darkness2O2-induced stomatal closure can be prevented by cytokinins,but not by auxins'>Ⅱ-3-3.Exogenous H2O2-induced stomatal closure can be prevented by cytokinins,but not by auxins2O2-induced DCF fluorescence in guard cells is reduced by cytokinins,but not by auxins'>Ⅱ-3-4.Exogenous H2O2-induced DCF fluorescence in guard cells is reduced by cytokinins,but not by auxinsⅡ-3-5.Closed stomata caused by dark can be reopened by cytokinins,but not by auxins2O2 generated by darkness,but auxins do not'>Ⅱ-3-6.Cytokinins reduce levels of H2O2 generated by darkness,but auxins do notⅡ-4.DiscussionChapter Three.Cytokinin- and auxin-induced stomatal opening involves the change of nitric oxide levels in guard cellsⅢ-1.IntroductionⅢ-2.Materials and methodsⅢ-2-1.ChemicalsⅢ-2-2.Plant materialsⅢ-2-3.Stomatal bioassayⅢ-2-4.Dye loading of DAF-2 DAⅢ-2-5.Laser-scanning confocal microscopyⅢ-2-6.Statistical analysisⅢ-3.ResultsⅢ-3-1.Cytokinins and auxins can induce stomatal openingⅢ-3-2.Effects of cytokinins and auxins on the darkness-induced NO levels in guard cellsⅢ-3-3.Cytokinins can,but auxins not,reverse SNP-induced stomatal closureⅢ-3-4.Effects of cytokinins and auxins on the SNP-induced DAF-2 DA fluorescence levels in guard cellsⅢ-3-5.Cytokinins can,but auxins not,reopen the closed stomata caused by darkⅢ-3-6.Effects of cytokinins and auxins on NO levels having been generated by darknessⅢ-4.DiscussionChapter Four.MAPK kinase and CDP kinase modulate hydrogen peroxide levels during darkness-induced stomatal closureⅣ-1.IntroductionⅣ-2.Materials and methodsⅣ-2-1.ChemicalsⅣ-2-2.Plant materialsⅣ-2-3.Stomatal bioassay2DCF-DA'>Ⅳ-2-4.Dye loading of H2DCF-DAⅣ2-5.Laser-scanning confocal microscopyⅣ-2-6.Statistical analysisⅣ-3.ResultsⅣ-3-1.Effects of PD98059 and TFP on dark-induced stomatal closure2O2 levels of guard cells'>Ⅳ-3-2.Both PD98059 and TFP affect the dark-induced H2O2 levels of guard cells2O2'>Ⅳ-3-3.Effects of PD98059/TFP on stomatal closure and DCF fluorescence in guard cells induced by exogenous H2O2Ⅳ-3-4.The closed stomata caused by dark can be reopened by PD98059 and TFP2O2 generated by darkness'>Ⅳ-3-5.PD98059 and TFP reduce levels of H2O2 generated by darknessⅣ-4.DiscussionChapter Five.The nitric oxide levels are modulated by MAPK kinase and CDP kinase during darkness-induced stomatal closureⅤ-1.IntroductionⅤ-2.Materials and methodsⅤ-2-1.ChemicalsⅤ-2-2.Plant materialsⅤ-2-3.Stomatal bioassayⅤ-2-4.Dye loading of DAF-2 DAⅤ-2-5.Laser-scanning confocal microscopyⅤ-2-6.Statistical analysisⅤ-3.ResultsⅤ-3-1.Both PD98059 and TFP reverse darkness-induced stomatal closureⅤ-3-2.Both PD98059 and TFP affect the dark-induced NO levels of guard cellsⅤ-3-3.Effects of PD98059/TFP on stomatal closure and NO levels in guard cells by SNPⅤ-3-4.PD98059 and TFP reopen the closed stomata caused by darknessⅤ-3-5.PD98059 and TFP reduce levels of NO generated by darknessⅤ-4.DiscussionChapter Six.Carbon monoxide-induced stomatal closure involves generation of hydrogen peroxide in guard cellsⅥ-1.IntroductionⅥ-2.Materials and methodsⅥ-2-1.ChemicalsⅥ-2-2.Plant materialsⅥ-2-3.Preparation of the gaseous CO aqueous solutionⅥ-2-4.Stomatal bioassay2DCF-DA'>Ⅵ-2-5.Dye loading of H2DCF-DAⅥ-2-6.Laser-scanning confocal microscopyⅥ-2-7.Statistical analysisⅥ-3.ResultsⅥ-3-1.Exogenous CO induces stomatal closure in a dose- and time-dependent manner2O2 is involved in CO-regulated stomatal closure'>Ⅵ-3-2.H2O2 is involved in CO-regulated stomatal closure2O2 generation in Vicia faba guard cells'>Ⅵ-3-3.CO induces H2O2 generation in Vicia faba guard cells2O2 in Vicia faba'>Ⅵ-3-4.Darkness-induced stomatal closure involves CO and H2O2 in Vicia faba2O2 synthesis'>Ⅵ-3-5.CO is involved in darkness-induced H2O2synthesisⅥ-4.DiscussionChapter Seven.Carbon monoxide-induced stomatal closure is dependent on nitric oxide synthesis in guard cellsⅦ-1.IntroductionⅦ-2.Materials and methodsⅦ-2-1.ChemicalsⅦ-2-2.Plant materialsⅦ-2-3.Preparation of the gaseous CO aqueous solutionⅦ-2-4.Stomatal bioassayⅦ-2-5.Dye loading of DAF-2 DAⅦ-2-6.Laser-scanning confocal microscopyⅦ-2-7.Statistical analysisⅦ-3.ResultsⅦ-3-1.Effect of exogenous CO on stomatal aperture of Vicia fabaⅦ-3-2.Effects of the scavenger/inhibitor of CO/NO on stomatal closure by COⅦ-3-3.CO induces NO generation in Vicia faba guard cellsⅦ-3-4.Darkness-induced stomatal closure involves CO and NO in Vicia fabaⅦ-3-5.CO is involved in darkness-induced NO synthesisⅦ-4.DiscussionChapter Eight.Conclusions and future perspectivesⅧ-1.ConclusionsⅧ-2.Future perspectivesReferencesAcknowledgmentsThe publications during studing for doctor's degree
相关论文文献
- [1].富氧条件及添加CO气体对天然气燃烧特性研究[J]. 锅炉制造 2019(05)
- [2].~(60)Co-γ辐射对大花紫薇叶绿素荧光特性的影响[J]. 东北林业大学学报 2020(01)
- [3].~(60)Co放射源单层排列的剂量分布[J]. 安徽农业科学 2020(02)
- [4].~(60)Co-γ射线辐照灭菌对沉香化气胶囊中6个挥发性成分的影响[J]. 药物分析杂志 2020(02)
- [5].Co-γ60射线辐照对清热灵颗粒化学成分簇的影响[J]. 河南大学学报(医学版) 2019(04)
- [6].额尔齐斯河流域不同来源哲罗鲑形态及COⅠ基因比较研究[J]. 水生生物学报 2020(01)
- [7].海滨雀稗~(60)Co-γ射线辐射突变体耐盐性评价[J]. 热带作物学报 2020(03)
- [8].~(60)Co-γ射线和电子束辐照对红碎茶杀菌效果与品质的影响[J]. 食品与机械 2020(03)
- [9].~(60)Co-γ射线辐照灭菌对康尔心胶囊指纹图谱和有效成分含量的影响[J]. 中国药师 2020(06)
- [10].~(60)Co-γ辐照对3种复合塑料包装材料中芥酸酰胺的辐解及迁移行为的影响[J]. 塑料科技 2020(06)
- [11].烟气反吹技术在蓄热式加热炉CO减排中的应用[J]. 山西冶金 2020(03)
- [12].基于线粒体COⅠ的南海北部长棘银鲈遗传多样性分析[J]. 海洋渔业 2020(03)
- [13].陕西秦巴山区野桑蚕线粒体COⅠ序列的遗传多样性与系统进化分析[J]. 西北农林科技大学学报(自然科学版) 2020(07)
- [14].院前急救中静舒氧对中、重度CO中毒的治疗效观察[J]. 临床研究 2020(08)
- [15].原料气中甲烷对深冷分离CO产品气的影响[J]. 化肥设计 2020(04)
- [16].CO深冷分离系统运行与总结[J]. 氮肥与合成气 2020(05)
- [17].矿井避难硐室CO净化效果检测[J]. 煤矿安全 2020(09)
- [18].水煤浆气化制氢CO变换工艺模拟与设计[J]. 氮肥与合成气 2020(07)
- [19].催化裂化装置CO焚烧炉热力计算[J]. 石化技术 2020(10)
- [20].~(60)Co-γ射线辐照对盐胁迫下杂交桑幼苗部分生理生化性状的影响[J]. 蚕业科学 2020(03)
- [21].深对流系统对污染气体CO垂直动力输送作用的数值模拟研究[J]. 大气科学 2019(06)
- [22].泰山螭霖鱼线粒体COⅠ基因序列的遗传多样性分析[J]. 安徽农业科学 2016(27)
- [23].大型γ辐照装置~(60)Co源倒装过程辐射环境监测方法[J]. 四川环境 2016(06)
- [24].~(60)Co-γ射线辐射美丽胡枝子的光合诱变效应[J]. 浙江农业科学 2017(01)
- [25].高压氧救治co中毒患者的护理[J]. 世界最新医学信息文摘 2016(59)
- [26].一种用于CO吸附的分子筛吸附剂的制备及研究[J]. 能源化工 2016(06)
- [27].粗煤气中CO恒等温变换技术及应用研究[J]. 中国石油石化 2016(S1)
- [28].基于线粒体CO Ⅰ基因的竹笋夜蛾亲缘关系[J]. 林业科学 2017(04)
- [29].CO控制技术在延迟焦化加热炉上的应用[J]. 当代化工 2017(06)
- [30].海滨雀稗~(60)Co-γ辐射诱变突变体筛选[J]. 草业学报 2017(07)
标签:细胞分裂素论文; 生长素论文; 一氧化碳论文; 气孔运动论文;
Cytokinin/auxin、MEK/CDPK和CO在蚕豆气孔运动中的作用及其与H2O2和NO的关系研究
下载Doc文档