新型二氧化硅囊泡材料的自组装及结构调控

新型二氧化硅囊泡材料的自组装及结构调控

论文摘要

随着纳米技术的发展,新型多孔材料引起了研究者的极大兴趣,并在缓释、催化、分离等领域具有重要的应用价值。多孔材料往往通过模板方法来制备,其中作为模板剂的表面活性剂分子可以自组装为不同的超分子结构,例如囊泡和不同的液晶相结构。利用不同的液晶相为模板(liquid crystal templating,LCT),可直接制备或者协同组装出有序介孔材料。Hubert等首先提出利用离子型表面活性剂形成有机囊泡作为模板(vesicle templating,VT),进而制备无机氧化硅单层囊泡材料的方法。最近,我们利用商品化嵌段高分子PEO20PPO70PEO20(PEO为聚环氧乙烷,PPO为聚环氧丙烷)为模板剂,在不加入有机共溶剂的条件下直接制备出大孔径、高孔容的无机单层囊泡材料,并提出了“协同囊泡模板”(cooperative vesicle templating,CVT)的机制。然而,相对目前大量利用LCT路线制备介孔材料的文献报道而言,通过CVT机制合成新型大孔材料的概念尚未得到更进一步的拓展。本论文在先前工作基础上,分别从无机前驱物和有机结构导向剂两方面进一步系统地考察了CVT方法在材料自组装及结构控制方面的详细机制,以拓展该路线的适用范围,并更深入地理解掌握LCT和CVT机制的区别和联系,以期制备出结构、形貌更丰富的新颖无机材料。我们发现在同一个模板体系中,仅仅通过硅源的改变就能实现囊泡或有序介孔结构的选择性合成。对于三嵌段聚合物B50-6600(EO39BO47EO39,BO为聚环氧丁烷)或P85(EO26PO39EO26)模板体系,在近中性的缓冲溶液体系中,保持其它合成参数完全一致的条件下,当正硅酸甲酯(tetramethyl orthosilicate,TMOS)作为硅源得到高度有序的介孔结构,然而利用正硅酸乙酯(tetraethyl orthosilicate,TEOS)作为前驱物则得到大孔径囊泡或泡沫结构。通过衰减全放射液体红外(ATR-FTIR)技术对B50-6600模板体系进行了硅物种演变的原位检测,并提出了“区分效应”机制对这一结果进行了合理解释。在此工作基础上,通过调节亲疏水体积比截然不同的表面活性剂B50-6600(EO39BO47EO39)和B20-3800(EO34BO11EO34)的比例或是带有不同烷氧基硅源TMOS和TEOS的比例,以及改变硅源和表面活性剂的摩尔比等方式,达到对CVT机制的精细调节,首次实现了二氧化硅囊泡材料形貌(空心球状、空心管状)、尺寸(25-100nm)和壁厚(5-25nm)的有效调控。LCT和CVT机制是一个相互竞争的过程,有效控制两种机制,对构造多级复杂结构的新颖材料具有非常重要意义。我们选择了分子量和疏水段较大的聚合物B50-6600为模板剂,在合适的反应条件下,找到了有机-无机复合球状胶束和囊泡状共存的体系点,最终得到新颖的覆盆子状多级二氧化硅空心球(hierarchical siliceous hollow spheres,HSHS)材料。通过考察反应时间及离子强度对材料结构的影响,提出了“胶体粒子”作用模型解释了覆盆子状HSHS新颖材料的形成过程。利用高分子聚合物EO20PO70EO20(P123)作为有机导向剂,采用无机硅酸钠作为硅源,模拟硅藻的矿化过程,在偏酸性条件下,通过改变反应温度、反应物浓度,制备得到聚集的多层囊泡,椭圆状的单层泡沫,以及具有“话梅”形貌的带有海绵状墙壁的多层囊泡。在缓和的水溶液体系中制备得到具有多种复杂孔结构的二氧化硅材料。

论文目录

  • 中文摘要
  • 英文摘要
  • 论文中所涉及到的主要专业名词的缩写说明
  • 第一章 前言
  • 1. 多孔材料的概述
  • 2. 介孔材料的形成机理
  • 3. 介孔材料合成规律
  • 4. 有机囊泡形成概述
  • 5. 无机二氧化硅囊泡的合成近况
  • 6. 生物矿化及仿生材料的自组装
  • 7. 论文选题思路及目的
  • 参考文献
  • 第二章 二氧化硅囊泡材料的制备及其形貌控制
  • 2.1 硅源对协同囊泡模板和液晶模板的调变
  • 2.1.1 引言
  • 2.1.2 实验部分
  • 2.1.3 测试表证
  • 2.1.4 结果与表征
  • 2.1.5 硅源对二氧化硅材料结构产生巨大差异的机理探讨
  • 2.1.6 利用硅源调节二氧化硅材料结构的意义
  • 2.1.7 本节小结
  • 2.2 通过改变不同嵌段聚合物或硅源的比例对囊泡结构的形状和尺寸进行有效控制
  • 2.2.1 引言
  • 2.2.2 实验部分
  • 2.2.3 测试表证
  • 2.2.4 结果与表征
  • 2.2.5 调变二氧化硅材料囊泡结构参数的讨论
  • 2.2.6 本节小结
  • 本章小结
  • 参考文献
  • 第三章 单模板合成“覆盆子”状多级二氧化硅空心球
  • 3.1 引言
  • 3.2 实验部分
  • 3.3 测试表证
  • 3.4 结果与表征
  • 3.5 “覆盆子”状HSHS材料结构形成机制探讨
  • 3.6 本章小结
  • 参考文献
  • 第四章 生物模拟途径制备各种二氧化硅囊泡状结构
  • 4.1 引言
  • 4.2 实验部分
  • 4.3 测试表证
  • 4.4 结果与表征
  • 4.5 各种囊泡状多级二氧化硅材料形成机理讨论
  • 4.6 本章小结
  • 参考文献
  • 附录:硕士期间主要科研成果目录
  • 致谢
  • 相关论文文献

    • [1].囊泡运输的分子细胞机制[J]. 中国细胞生物学学报 2019(01)
    • [2].细胞的“快递员”——囊泡[J]. 科学24小时 2014(01)
    • [3].细胞外囊泡成像方法最新研究进展[J]. 南方医科大学学报 2020(02)
    • [4].细胞外囊泡检测分析方法研究进展[J]. 中国细胞生物学学报 2020(01)
    • [5].基于人工囊泡研究跨膜蛋白的结构和功能综述[J]. 质量探索 2017(02)
    • [6].胞外囊泡表面糖缀合物研究进展[J]. 生物化学与生物物理进展 2017(10)
    • [7].细胞的“快递员”——囊泡——2013年诺贝尔生理学或医学奖[J]. 知识就是力量 2013(11)
    • [8].走近诺贝尔奖(四) 细胞的“快递员”——囊泡[J]. 大自然探索 2015(04)
    • [9].分泌囊泡启动步骤和相关调节蛋白研究进展[J]. 现代生物医学进展 2008(02)
    • [10].细胞外囊泡及其在创伤性颅脑损伤诊疗中应用的研究进展[J]. 广西医学 2020(01)
    • [11].细胞外囊泡的分离及鉴定方法[J]. 新医学 2019(09)
    • [12].细胞外囊泡作为药物载体的应用前景[J]. 东南大学学报(医学版) 2019(05)
    • [13].阴/阳离子表面活性剂自发囊泡的氧化还原响应行为研究[J]. 日用化学工业 2019(11)
    • [14].基于静电自组装技术制备纤维素基多糖囊泡[J]. 广州化工 2017(12)
    • [15].囊泡:另类的快递员——2013年诺贝尔生理学或医学奖解读[J]. 生命世界 2013(12)
    • [16].基于细胞/细胞外囊泡的药物递送系统研究进展[J]. 南京中医药大学学报 2020(05)
    • [17].寄生虫细胞外囊泡的研究现状及展望[J]. 中国寄生虫学与寄生虫病杂志 2018(04)
    • [18].中亚滨藜盐囊泡对NaCl胁迫的响应[J]. 湖北农业科学 2009(04)
    • [19].原核生物胞外囊泡的生成与功能[J]. 医学综述 2020(01)
    • [20].细胞外囊泡与肿瘤相关性的研究[J]. 现代肿瘤医学 2016(08)
    • [21].微囊泡和微泡变化与头颈部癌的疗效关系[J]. 中国耳鼻咽喉颅底外科杂志 2016(04)
    • [22].血红蛋白在Span 80/PEG 400/H_2O囊泡体系中的结构性质[J]. 物理化学学报 2011(08)
    • [23].单一神经囊泡的电分析化学研究[J]. 分析化学 2019(10)
    • [24].酶触发聚合物囊泡-核交联胶束转变用于响应性抗菌剂释放[J]. 高分子学报 2017(07)
    • [25].高分子囊泡和空心球的制备和几个研究亮点[J]. 高分子学报 2011(09)
    • [26].Ca~(2+)依赖和Ca~(2+)不依赖的囊泡分泌研究进展[J]. 现代生物医学进展 2008(03)
    • [27].COPⅠ囊泡形成与结构研究进展[J]. 生命的化学 2018(06)
    • [28].细胞的囊泡运输机制——浅释2013年诺贝尔生理学或医学奖[J]. 科技导报 2013(34)
    • [29].Complexin在囊泡运输中的作用[J]. 生物化学与生物物理进展 2015(05)
    • [30].基于硼酸/二醇识别的新型糖囊泡荧光传感器[J]. 高等学校化学学报 2011(03)

    标签:;  ;  ;  ;  

    新型二氧化硅囊泡材料的自组装及结构调控
    下载Doc文档

    猜你喜欢