论文摘要
近年来,在科学试验工程应用中越来越多地采用多功能传感技术,这是因为和传统的传感器比较,它有很多优越性,如体积小、能耗低和功能灵活等,这些优点增加了测量系统判决和估计的精确性、稳健性以及在对抗环境下的生存能力。多功能传感器技术的迅猛发展,对信号处理理论和方法提出了新的要求。传统的信号重构技术已经不能满足多功能传感器发展的全部要求,诸如信号非线性、拟合精度和粗差处理等问题用经典的重构算法已经无法解决。为此,本文系统研究了非线性多功能传感器的信号重构问题,并提出了若干种解决上述问题的算法,旨在为多功能传感器的开发应用奠定理论和技术基础。在非线性多功能传感器的信号重构过程中,训练样本集不可避免地夹杂粗差数据。为了得到既有较强鲁棒性又有较高效率的估值,本文分别从抗差估计和粗差剔除两个层面给出了解决方案。其中抗差估计的研究又分为M估计法和抗差最小二乘法两部分。一方面,M估计法利用极大似然估计原理,对残差取1范数,抑制了离群数据对整体误差的影响,从而弥补了在实验数据存有奇异值情况下,最小二乘法重构误差较大的缺点。另一方面,抗差最小二乘估计通过等价权原理,把抗差估计与加权最小二乘结合在一起,因此在抵御粗差影响的同时保持了最小二乘法的优点。非线性信号重构的粗差抑制结果表明,无论是M估计法,还是抗差最小二乘法,都具有良好的抗差能力和收敛性。在粗差剔除研究中,分别将交叉验证法和F-S检验法用于粗差数据的定位、剔除和修复。其中,交叉验证法利用交叉验证原理和径向基神经网络对实验训练数据进行多次随机取样和重构检验,通过对重构结果的寻优处理,确定不含粗差数据的最优样本和系统模型。而F-S检验法考虑到传统粗差检验方法容易对高杠杆点和粗差点产生误判,因此在结合学生氏和外学生氏残差检验的基础上有效地区分了两者。定位粗差后,利用径向基神经网络拟合法重建粗差点,从而完成训练样本集的修复。仿真结果证实了交叉验证法和F-S检验法在粗差数据定位和修复中的有效性。针对传统最小二乘法全局拟合的局限性,本文将一种新型的数值算法,移动最小二乘法应用于非线性多功能传感器的信号重构。通过详细研究插值函数的构造方法及性质,合理地选取基函数和权函数,移动最小二乘法能够得到精确的信号重构值。另外,由于移动最小二乘法在对固定点的重构中将退化为传统最小二乘法,为了避免求解奇异方程,本文给出了改进算法。通过选取等价正交基函数,改进移动最小二乘法在避免奇异情况产生的同时,简化了信号重构的进程。为了检验非线性信号重构算法在实际应用中的效果,本文进行了盐油水溶液的浓度测量实验。实验选用四电极超声波多功能传感器,对不同含油率、含盐率和温度值的混合溶液进行了测量,并得到了电导率和超声波渡越时间的实测数据。最后,利用改进移动最小二乘法拟合实验数据,构造出了传感器的逆模型,实现了输入信号的重构。实验结果令人满意,证明了非线性传感器的信号重构算法在实际应用中的可行性。
论文目录
相关论文文献
- [1].压缩感知理论在信息整合信号重构上的应用[J]. 信息记录材料 2018(04)
- [2].一种非均匀采样信号重构方法[J]. 信息通信 2013(09)
- [3].基于稀疏信号重构的近场源定位[J]. 电子学报 2014(06)
- [4].基于稀疏信号重构的无线传感网络目标定位[J]. 仪器仪表学报 2012(02)
- [5].基于小波框架方法的信号重构[J]. 高校应用数学学报A辑 2019(03)
- [6].压缩感知中信号重构的极大熵方法(英文)[J]. 应用数学 2010(02)
- [7].固定时间梯度流在?_1-?_2范数中的稀疏重构[J]. 应用数学和力学 2019(11)
- [8].BD系统中的信号重构技术[J]. 记录媒体技术 2008(03)
- [9].加权稀疏信号重构的近场源定位方法[J]. 声学技术 2017(01)
- [10].不确定量测联合信号重构的稳定性[J]. 系统科学与数学 2014(10)
- [11].基于FRM的低复杂度信号重构系统研究[J]. 电子测量技术 2018(23)
- [12].基于l_1-l_2范数的块稀疏信号重构[J]. 应用数学和力学 2017(08)
- [13].基于单子带信号重构改进算法的电机故障诊断[J]. 中国设备工程 2019(03)
- [14].基于稀疏信号重构的DOA和极化角度估计算法[J]. 电子学报 2016(07)
- [15].基于稀疏信号重构的阵元位置误差校正方法[J]. 声学学报 2017(06)
- [16].基于l_0范数近似最小化的稀疏信号重构方法[J]. 计算机工程与应用 2015(10)
- [17].低通信号抽样原理及验证方法研究[J]. 中国新通信 2020(14)
- [18].压缩对称嵌套阵列和稀疏信号重构的近场目标方位估计(英文)[J]. 声学技术 2018(01)
- [19].基于成比例归一化最小均方误差算法的压缩感知信号重构[J]. 自动化技术与应用 2016(11)
- [20].预估校正法在大规模信号重构问题中的应用[J]. 应用数学 2017(03)
- [21].双基星载HRWS-SAR系统方位向信号重构的矩阵求逆算法[J]. 雷达学报 2017(04)
- [22].利用概率结构稀疏模型实现信号重构的新算法[J]. 西安电子科技大学学报 2013(02)
- [23].带限信号重构问题的迭代正则化方法[J]. 兰州理工大学学报 2011(06)
- [24].压缩感知中基于FADMM的l_1-l_1范数信号重构[J]. 计算机应用与软件 2018(07)
- [25].“北斗”信号重构的导向矢量实时校正[J]. 电讯技术 2020(11)
- [26].基于量化压缩感知的IR-UWB接收信号重构研究[J]. 电子与信息学报 2012(11)
- [27].一种求解稀疏信号重构的新算法[J]. 计算机科学 2013(S1)
- [28].基于曼彻斯特编码算法的单通道二次雷达信号重构方法[J]. 探测与控制学报 2018(03)
- [29].悬架座椅激励输入谱的时域信号重构研究[J]. 机械科学与技术 2013(12)
- [30].一种基于数据平滑的压缩感知信号重构法[J]. 电路与系统学报 2013(02)
标签:多功能传感器论文; 非线性信号重构论文; 抗差估计论文; 粗差剔除论文; 三元溶液浓度测量论文;