固相法合成聚苯胺/碳纳米管、TiO2复合物及其性能研究

固相法合成聚苯胺/碳纳米管、TiO2复合物及其性能研究

论文摘要

在众多的导电聚合物中,聚苯胺(Polyaniline,PANI)因具有良好的导电性、可逆的电化学氧化还原特性、较强的电荷贮存能力和良好的环境稳定性而被广泛应用在电致变色器件、电催化、二次电池以及传感器等许多领域。无机纳米粒子因其优异的光、电、磁、吸波、催化、增强增韧等物理和化学性质而被广泛应用于电子学、催化、光学、生物和医药等多种领域。将无机纳米粒子引入聚苯胺母体制备出具有优异性能的复合物材料是目前研究的热点。本论文通过固相反应分别以多壁碳纳米管(MCNTs)、单壁碳纳米管(SWNTs)、锐钛矿型纳米TiO2和金红石型纳米TiO2作为无机相,聚苯胺为有机相,制备了一系列PANI/无机纳米复合物。通过红外光谱(FTIR)、紫外-可见光谱(UV-vis)、拉曼光谱(Raman)、X-射线衍射(XRD)、扫描电镜(SEM)、透射电镜(TEM)、热重分析(TGA)、循环伏安法(CV)、恒电流充放电以及交流阻抗(EIS)等测试手段对复合物的结构、形貌和电化学性能进行了表征和测试,并且探讨了无机纳米粒子的含量对复合物结构与性能的影响。具体研究内容如下:1.通过固相反应制备了PANI/MCNTs复合物,其中MCNTs含量分别为8wt%、16wt%、24wt%和32wt%。结果表明,固相合成中MCNTs使复合物表现出比PANI较高的氧化程度、掺杂率以及导电率,而且MCNTs的含量对其形貌有一定的影响。当MCNTs含量为16wt%时,复合物表现出相对较高的比电容,即在1M H2SO4和1M KCl中的最大比电容分别可达522Fg-1和425Fg-1。2.通过固相反应制备了PANI/SWNTs复合物,其中SWNTs含量分别为8wt%、16wt%、24wt%和32wt%。结果表明,复合物表现出比PANI较高的氧化程度、掺杂率以及导电率。当电流密度由5mAcm-2增至20mAcm-2时,SWNTs含量为8wt%的复合物具有较高的比电容和电化学稳定性,在酸性和中性溶液中电容保持率分别为94%和80%。3.通过固相反应制备了PANI/Anatase-TiO2复合物,其中Anatase-TiO2含量分别为6.2wt%、12.8wt%、17.6wt%和24.1wt%。结果表明,复合物表现出比PANI较高的氧化程度和掺杂率。各不同比例的Anatase-TiO2复合物均表现出200nm左右的颗粒状形貌。充放电测试结果表明,Anatase-TiO2含量为6.2wt%的复合物具有较高的比电容,可达到523Fg-1,表现出较理想的电容行为。4.通过固相反应制备了PANI/Rutile-TiO2复合物,其中rutile-TiO2含量分别为6.2wt%、12.8wt%、17.6wt%和24.1wt%。结果表明,复合物中的PANI分子链具有较高的氧化程度和热稳定性,而且Rutile-TiO2阻碍聚苯胺的结晶性。电化学测试结果表明,当加入适当量的R-TiO2可以提高复合物电极的比电容。

论文目录

  • 摘要
  • Abstract
  • 第一章 绪论
  • 1.1 引言
  • 1.2 聚苯胺
  • 1.2.1 聚苯胺概述
  • 1.2.2 聚苯胺的合成
  • 1.3 聚苯胺/无机纳米复合材料
  • 1.3.1 聚苯胺/无机纳米复合材料的分类
  • 1.3.1.1 聚苯胺一碳材料复合物
  • 1.3.1.2 PANI-金属纳米复合材料
  • 1.3.1.3 PANI-金属氧化物复合材料
  • 1.3.2 聚苯胺/无机纳米复合材料的制备方法
  • 1.3.2.1 溶胶-凝胶法(Sol-Gel method)
  • 1.3.2.2 共混法
  • 1.3.2.3 原位聚合法
  • 1.3.2.4 电化学聚合(Electrochemical Polymerization)
  • 1.3.2.5 自组装法 (Self-assembly)
  • 1.4 固相化学反应
  • 1.4.1 室温固相化学反应
  • 1.4.2 固相化学反应在聚苯胺及其复合物合成的引用
  • 1.5 选题背景及本论文的研究内容
  • 第二章 固相法合成聚苯胺与多壁碳纳米管复合物及其性能研究
  • 2.1 引言
  • 2.2 实验部分
  • 2.2.1 主要试剂
  • 2.2.2 主要仪器
  • 2.2.3 电化学性能测试
  • 2.2.4 PANI/MCNTs 复合物的制备
  • 2.2.4.1 多壁碳纳米管(MCNTs)的纯化
  • 2.2.4.2 掺杂剂的选择
  • 2.2.4.3 固相法制备 PANI/MCNTs 复合物
  • 2.3 结果与讨论
  • 2.3.1 纯化温度的选择
  • 2.3.2 掺杂剂的选择
  • 2.3.3 红外光谱分析(FTIR)
  • 2.3.4 拉曼光谱(Raman)
  • 2.3.5 紫外可见光谱(UV-vis)
  • 2.3.6 X-射线衍射(XRD)
  • 2.3.7 微观形貌
  • 2.3.8 电化学测试
  • 2.3.9 导电率
  • 2.4 本章小结
  • 第三章 固相法合成聚苯胺与单壁碳纳米管(PANI/SWNTS)复合物及其性能研究
  • 3.1 实验部分
  • 3.1.1 主要试剂
  • 3.1.2 仪器
  • 3.1.3 聚苯胺/SWNTs 复合物的制备
  • 3.2 结果与讨论
  • 3.2.1 红外光谱分析(FTIR)
  • 3.2.2 拉曼光谱(Raman)
  • 3.2.3 紫外可见光谱(UV-vis)
  • 3.2.4 X-射线衍射(XRD)
  • 3.2.5 微观形貌
  • 3.2.6 电化学测试
  • 3.2.7 导电率
  • 3.3 本章小结
  • 2复合物的固相法制备与性能研究'>第四章 聚苯胺与锐钛矿型 TIO2复合物的固相法制备与性能研究
  • 引言
  • 4.1 实验部分
  • 4.1.1 主要试剂
  • 2复合物的固相法合成'>4.1.2 PANI/Anatase-TiO2复合物的固相法合成
  • 4.1.3 主要仪器
  • 4.1.4 电化学性能测试
  • 4.2 结果与讨论
  • 4.2.1 红外光谱(FTIR)
  • 4.2.2 紫外可见光谱(UV-vis)
  • 4.2.3 X-射线衍射(XRD)
  • 4.2.4 微观形貌
  • 4.2.5 电化学测试
  • 4.2.5.1 PANI 和复合物的充放电测试
  • 4.2.5.2 PAT-5 复合物电极的充放电测试
  • 4.2.5.3 复合物 PAT-5 的循环伏安测试
  • 4.2.5.4 复合物 PAT-5 的交流阻抗测试
  • 4.3 本章小结
  • 2复合物的固相法合成及其性能研究'>第五章 聚苯胺与金红石型 TIO2复合物的固相法合成及其性能研究
  • 5.1 实验部分
  • 5.1.1 主要试剂
  • 2复合物的制备'>5.1.2 PANI/Rutile-TiO2复合物的制备
  • 5.1.3 主要仪器
  • 5.1.4 电化学性能测试
  • 5.2 结果与讨论
  • 5.2.1 红外光谱分析(FTIR)
  • 5.2.2 紫外可见光谱(UV-vis)
  • 5.2.3 X-射线衍射(XRD)
  • 5.2.4 微观形貌
  • 5.2.5 热重分析(TGA)
  • 5.2.6 恒电流充放电测试
  • 5.2.7 循环伏安(CV)
  • 5.2.8 交流阻抗曲线(EIS)
  • 5.3 本章小结
  • 结论
  • REFERENCE
  • 个人简介及硕士期间发表、整理论文情况
  • 致谢
  • 相关论文文献

    • [1].ZnO@MOF@PANI core-shell nanoarrays on carbon cloth for high-performance supercapacitor electrodes[J]. Journal of Energy Chemistry 2019(08)
    • [2].Thermal conductivity of PVDF/PANI-nanofiber composite membrane aligned in an electric field[J]. Chinese Journal of Chemical Engineering 2018(05)
    • [3].Thermal Characteristics of PVA-PANI-ZnS Nanocomposite Film Synthesized by Gamma Irradiation Method[J]. Chinese Physics Letters 2018(11)
    • [4].Synthesis and Enhanced Electrochemical Activity of Ag-Pt Bimetallic Nanoparticles Decorated MWCNTs/PANI Nanocomposites[J]. Journal of Wuhan University of Technology(Materials Science) 2018(05)
    • [5].Immobilization of PANI on Mesoporous Carbon:Preparation and Supercapacitor Performance[J]. Transactions of Nanjing University of Aeronautics and Astronautics 2018(04)
    • [6].A Self-Powered Breath Analyzer Based on PANI/PVDF Piezo-Gas-Sensing Arrays for Potential Diagnostics Application[J]. Nano-Micro Letters 2018(04)
    • [7].NiCo_2O_4 decorated PANI–CNTs composites as supercapacitive electrode materials[J]. Journal of Energy Chemistry 2017(01)
    • [8].Electrical Conductivity and pH Sensitivity of Ordered Porous Gel Acrylate Polymer Membrane with Nano-PANI Doping[J]. Journal of Harbin Institute of Technology 2017(02)
    • [9].接枝聚合法制备PANI/CeO_2-APTMS复合材料及其电化学性能[J]. 高分子材料科学与工程 2017(07)
    • [10].花状CuS/PANI复合材料的制备及其电磁屏蔽性能研究[J]. 现代化工 2017(11)
    • [11].MnFe_2O_4@PANI@Ag Heterogeneous Nanocatalyst for Degradation of Industrial Aqueous Organic Pollutants[J]. Journal of Materials Science & Technology 2016(02)
    • [12].PANI导电水凝胶的制备及其进展[J]. 高分子通报 2020(06)
    • [13].原位聚合法制备PANI/RGO导电复合材料的性能[J]. 工程塑料应用 2018(03)
    • [14].硅烷偶联剂预处理PANI对水性涂料性能的影响[J]. 精细化工 2017(11)
    • [15].Synthesis and supercapacitor characteristics of PANI/CNTs composites[J]. Chinese Science Bulletin 2010(11)
    • [16].Preparation of Surfactants Directed PANI/In_2O_3 Nanocomposite Thin Films and Its NH_3-Sensing Properties[J]. Journal of Electronic Science and Technology 2010(02)
    • [17].Preparation,Characterization and Comparative NH_3-sensing Characteristic Studies of PANI/inorganic Oxides Nanocomposite Thin Films[J]. Journal of Materials Science & Technology 2010(07)
    • [18].Chlorine gas sensors using hybrid organic semiconductors of PANI/ZnPcCl_(16)[J]. 半导体学报 2010(08)
    • [19].Investigation of Novel Short Fiber-like Polyaniline/Cerium Nitrate Composite[J]. Journal of Wuhan University of Technology(Materials Science) 2019(01)
    • [20].Nano-Au@PANI蛋黄空心结构电极材料的构筑及超级电容性能[J]. 材料导报 2018(01)
    • [21].PANI/MoS_2复合材料的制备及其电化学性能研究[J]. 当代化工 2018(05)
    • [22].双脉冲电镀制备PbO_2-PANI复合电极的研究[J]. 化工新型材料 2018(07)
    • [23].Two-dimensional polyaniline nanosheets via liquid-phase exfoliation[J]. Chinese Physics B 2017(04)
    • [24].Preparation and Antibacterial Activity of Three-component NiFe_2O_4@PANI@Ag Nanocomposite[J]. Journal of Materials Science & Technology 2014(07)
    • [25].PMOV_2/PANI/TiO_2复合材料的制备及光催化性能[J]. 化工新型材料 2012(12)
    • [26].Synthesis and characterization of conducting polyaniline nanocomposites containing ZnO nanorods[J]. Progress in Natural Science:Materials International 2012(04)
    • [27].PANI/Fe-杭锦2~#土催化剂对乙酸的光催化降解研究[J]. 内蒙古师范大学学报(自然科学汉文版) 2019(05)
    • [28].电场-抽滤法制备VACNTs/PANI复合膜及其热性能研究[J]. 广州化工 2018(15)
    • [29].Effect of CNTs and nano ZnO on physical and mechanical properties of polyaniline composites applicable in energy devices[J]. Progress in Natural Science:Materials International 2016(06)
    • [30].Ternary Fe_3O_4@PANI@Au nanocomposites as a magnetic catalyst for degradation of organic dyes[J]. Science China(Technological Sciences) 2017(05)

    标签:;  ;  ;  ;  ;  ;  

    固相法合成聚苯胺/碳纳米管、TiO2复合物及其性能研究
    下载Doc文档

    猜你喜欢