风力发电中的电能质量问题分析朱国朋

风力发电中的电能质量问题分析朱国朋

(深圳智润新能源电力勘测设计院有限公司广东深圳518000)

摘要:风能是一种清洁的、有可靠成本效益的发电资源,具有很高的环境效益和社会效益。全球市场对于风力发电这样的具有很高环保效益和社会效益的技术有着巨大且持续增长的需求。随着风电技术发展,我国风电装机容量不断上升,风力发电将逐步成为电力系统重要的电力来源。但受自然、技术等因素影响,风力发电引起的电压波动、闪变和谐波等电能质量问题阻碍了其发展。因此,如何控制好风力发电中的电能质量就显得十分重要。

关键词:风力发电;电能质量;问题;措施

风力发电规模迅速扩大,风电场并网是电力系统发展趋势。但风力发电过程中产生的电力谐波、电压波动及闪变等问题,严重影响着风力发电的效率。只有这些问题得到有效解决,才能发挥风力发电效能,使整个发电系统稳定运行。

1风力发电并网技术

企业要开展风力发电,必须选择适合企业相关情况的风力发电技术,这直接影响到企业后的电能质量。合适的电网技术系统会影响风力发电机组的发电相位、发电机的电压频率和发电机输出峰值等相关数据。发电机组容量的提高对风力发电技术的最直接影响是并网过程中产生的冲击。并网过程中产生的冲击会降低发电机组的峰值发电量,损坏发电机组的物理部件,会对发电机的电机造成摩擦损坏,容易损坏支撑塔。由于发电机组的发电系统与各发电机组的电网相连,并网的影响也会影响同一电网下的相关机组,破坏系统的稳定性,使发电机分离。因此,适合企业的并网技术对企业有着重要的影响。

同步风力机具有效率高、体积小、结构紧凑、成本低、可靠性高、维护量小等特点。同步发电机的无功功率和有功功率同时输出。发电机转速稳定,负荷特性强,周期波稳定,发电机电能质量高。同步风力发电机广泛应用于风力发电,几乎所有的企业。均采用同步风电机组并网技术。但同步风力发电机组并不是所有的优点。在实际发电过程中,同步风力机对风力的控制较弱,不能形成稳定的电机运行。转子转矩的波动不能控制在一定的参数范围内。当每个发电机连接到电网时,发电机需要。发电机的频率应与系统频率和发电机出口功率相同。电压与系统电压相同,最大误差应小于5%,发电机相序与系统相序相同,但同步发电机往往达不到上述精度标准,会出现一些系统误差。并网时,要求运行人员调整发电机组,实现控制发电机组与系统的连接。然而,如果在这个过程中出现错误,由于负载突然变化时转子的惯性,旋转角度不能立即稳定在新的值上,并且在新的稳定值周围有几个摆动。这是同步风力发电机组容易出现的问题,但这些问题可以通过技术来解决。

与同步风机相比,与同步风机具有相同标准的异步风机在风机调速精度要求上明显优于同步风机,在发电机运行时,设备运行不同步或不连续。关于设备和速度要求。异步风力机控制力小,运行不复杂。由异步风力机组成的风力机只需调整一个重要参数即可实现发电控制。经简单控制,异步风力发电机组并网后运行平稳,无失步和振荡现象。异步风机的优点是运行稳定,稳定性好,几乎没有问题。然而,异步风力发电机组仍有不足之处。当工作人员进行机组并网运行时,如果操作不当,会对电网产生较大的电流冲击,降低电网电压,降低系统运行的不平衡度,降低稳定性。与可以产生无功功率的同步风力机不同,异步风力机需要手动补偿。当系统频率增大到峰值时,机组的同步速度也会加快。电动机旋转状态的变化将影响电能的产生,系统频率的降低和电网负荷的增加将影响电网的运行。因此,在异步风力发电机组运行过程中,工作人员应随时了解运行情况。

2风力发电对电网电能质量的影响

2.1电压波动和闪变

电压波动指电压方均根值一系列相对快速变动或连续改变的现象。电压波动大小可由相对电压变动特性d来描述:

CP(λ,β)———风能利用系数,是叶尖速比λ和桨距角β的函数。

由式(3)可知,风电机组的输出功率与风速、空气密度有关,其值随风况在零功率和额定功率之间不断波动,其中风速影响更大。由于风电场风速的随机性大,风机功率频繁变化会引起电压频繁波动和闪变。此外,受塔影效应、偏航误差等因素影响,风机叶轮的转矩波动会造成风机输出功率的波动。

2.2谐波

恒速恒频风力发电系统在运行过程中没有电力电子元件参与,故没有谐波产生。软并网装置含有电力电子元件,当机组在工作状态时,将产生部分谐波电流,但因为时间很短可以忽略不计。

变速恒频风力发电系统因要产生恒频电能,采用了大容量电力电子元件,给电网造成了严重的谐波污染,谐波干扰的程度取决于电力电子元件装置的整体设计结构及其安装的滤波装置性能,同时也与电网的短路容量有关。此外,当风力发电机的无功补偿装置与线路电抗产生谐振,对谐波会起到严重的放大作用。

3提高电能质量的措施

3.1电压波动与闪变的抑制技术

供电网络结构、负荷特性以及电力系统短路容量大小是决定电压波动与闪变程度的重要因素。同时,频繁启动功率较大的电机也会给系统造成很大冲击。因而,抑制电压波动与闪变必然要从选择补偿装置、改善设备性能、提高供电能力等几方面来采取相应措施。一般可通过降压、加设斩波器、串接电阻等方式实现电动机启动特性的改善。通过如架设专用供电线路之类的供电方式的改造,可以有效降低电压波动和闪变问题的严重程度,但需从经济性角度衡量投资与效益的关系。采用快速无功功率补偿装置也能很好抑制电压波动和闪变。

3.2电力谐波抑制技术

随着越来越多敏感负荷对滤波效果要求的提高以及全控型功率器件技术的进步,有源电力滤波器开始受到人们的重视。有源电力滤波器相对于无源滤波器被动吸收固定谐波而言,其能动态产生与补偿谐波形状一致、相位相反的电流,以抵消非线性负荷产生的谐波电流,达到抑制谐波的目的。有源电力滤波器响应速度快,能实现动态跟踪补偿,滤波效果不受系统参数影响的特点,使其成为抑制电力谐波的良好选择。除此之外,电抗器、电容器等其他静止无功补偿装置也能对谐波起到较好的抑制效果。

结论

尽管电力技术已经能够使电力质量大幅提升,推动我国风电的技术进步,我国风电并网技术依旧不够完善,风力发电缺乏普适性,无法完全应用在全部风电企业中,我国的风力资源十分丰富,风力发电是研究方向首选的发电研究技术,需要各个发电企业共同推进风电技术能力,促进我国的风力发电技术发展。

参考文献

[1]李昆.浅析风力发电并网技术及电能质量控制[J].应用能源技术,2016,14(11):49-51.

[2]樊裕博.风力发电并网技术及电能质量控制策略[J].科技传播,2015,7(21):43-44.

[3]魏巍,关乃夫,徐冰.风力发电并网技术及电能质量控制[J].林电力,2018,42(5):24-26.

标签:;  ;  ;  

风力发电中的电能质量问题分析朱国朋
下载Doc文档

猜你喜欢