本文主要研究内容
作者(2019)在《Ordered space-time structures: Quantum carpets from Gaussian sum theory》一文中研究指出:The term "quantum carpet" can be observed in many closed quantum systems, where the evolution of a wave function exhibits a carpet-like pattern. Quantum carpet mechanisms are also akin to the classical interference patterns of light. Although the origins of quantum carpets have previously been studied by various researchers, many interesting details are still worth exploring. In this study, we present a unified framework for simultaneously analyzing three different features of quantum carpets: full revival,fractional revival, and diagonal canal. For the fractional revival feature, a complete formula is presented to explain its formation through Gaussian sum theory, in which all essential features, including phases and amplitudes, are captured analytically. We also reveal important relationships between the interference terms of diagonal canals and their geometric interpretations such that a better understanding of the development of diagonal canals can be supported.
Abstract
The term "quantum carpet" can be observed in many closed quantum systems, where the evolution of a wave function exhibits a carpet-like pattern. Quantum carpet mechanisms are also akin to the classical interference patterns of light. Although the origins of quantum carpets have previously been studied by various researchers, many interesting details are still worth exploring. In this study, we present a unified framework for simultaneously analyzing three different features of quantum carpets: full revival,fractional revival, and diagonal canal. For the fractional revival feature, a complete formula is presented to explain its formation through Gaussian sum theory, in which all essential features, including phases and amplitudes, are captured analytically. We also reveal important relationships between the interference terms of diagonal canals and their geometric interpretations such that a better understanding of the development of diagonal canals can be supported.
论文参考文献
论文详细介绍
论文作者分别是来自Science China(Physics,Mechanics & Astronomy)的,发表于刊物Science China(Physics,Mechanics & Astronomy)2019年07期论文,是一篇关于,Science China(Physics,Mechanics & Astronomy)2019年07期论文的文章。本文可供学术参考使用,各位学者可以免费参考阅读下载,文章观点不代表本站观点,资料来自Science China(Physics,Mechanics & Astronomy)2019年07期论文网站,若本站收录的文献无意侵犯了您的著作版权,请联系我们删除。