降解多环芳烃高效菌及生物活性炭的研制

降解多环芳烃高效菌及生物活性炭的研制

论文摘要

我国钢铁生产过程中耗水量极大,特别是伴随着炼焦工艺所产生的大量焦化废水。焦化废水含有大量的对环境和人类健康有害的却难以降解的多环芳烃,若不处理而直接排入环境中,产生的危害是难以估量的。我国吨钢耗新水量和外排废水量与国际的先进技术相比仍存在着很大的差距,因此提高我国钢铁企业特别是炼焦行业的水资源综合利用率和外排水的再生利用率,将对我国水资源合理利用、经济的稳定而快速地发展和社会和谐发展具有举足轻重的现实意义。焦化废水中含有大量“三致”和难降解的组分——的多环芳烃,因此处理焦化废水的关键是低耗能和无二次污染的绿色环保技术。萘类和喹啉类是焦化废水中百分含量最高的多环芳烃类化合物,以此两类物质为对象研究微生物降解,对焦化废水的深度处理和再生循环利用具有着重要意义。生物活性炭(BAC)水处理技术作为一种绿色水处理技术在微污染废水和工业废水深度处理有着广泛地应用,但在焦化废水的深度处理的回用的应用研究却鲜见报道。本课题就是根据BAC工艺特性,研究萘和异喹啉多环芳烃类可微生物降解性、生物活性碳工艺在焦化废水深度处理工艺中的实用性、可行性和优越性,为后续的研究和焦化废水的循环回用提供理论依据。研究结果表明:(1)本实验成功从焦化厂土壤和曝气池活性污泥中通过富集、驯化和纯化等实验,成功地筛选出以萘和异喹啉分别为唯一碳源的菌株N-3和菌株K-4,对底物萘和异喹啉分别具有最高去除率和菌株生长量;并为后续的生物活性炭试验提供高效降解微生物。(2)根据高效降解菌株N-3的生理生化特性及16Sr DNA序列分析结果,鉴定菌株N-3为枯草芽孢杆菌Bacillus subtilis,其GenBank序列号是AEHM01000002.1。(3)根据高效降解菌株K-4的生理生化特性结果,初步确定菌株K-4为Pseudomonas。(4)采用单独投加高效降解菌混合液、GAC-3型活性炭和生物活性炭分别处理焦化废水二沉池出水。经过72h处理,生物活性炭对CODcr去除率分别比GAC-3型活性炭和高效微生物提高了17.80%和61.61%;色度去除率分别提高了2.2%和89.41%,满足中水回用标准。经过15次重复处理,生物活性炭对CODcr平均去除率分别比GAC-3型活性炭和高效微生物分别提高了11.90%和86.08%;色度平均去除率分别提高了26.6 %和79.02%。生物活性炭显示出其在深度处理回用焦化废水的优越性和可行性。(5)高效降解微生物与活性炭共同研制出的生物活性炭装置对模拟废水中的有机物具有较好去除率并稳定在60%左右。(6)生物活性炭上的高效降解微生物经循环泵入高效降解混合菌悬液和营养水,均匀、紧密地附着、生长在活性炭表面并形成具有降解性能的生物膜。生物活性炭上的生物量随着碳层高度的增加呈现下降的趋势;装置的试验最终出水中OD值呈现先上升后下降,并趋于稳定。生物活性炭吸附降解模拟废水中的有机物的动力学模型符合一级动力学模型,InC=-0.0318t+6.0143。

论文目录

  • 摘要
  • ABSTRACT
  • 前言
  • 1. 文献综述
  • 1.1 多环芳烃的危害及生物降解研究进展
  • 1.2 焦化废水处理现状和深度处理技术
  • 1.3 生物活性炭技术
  • 1.4 本课题研究研究意义和内容
  • 2. 高效降解菌底物的确定
  • 2.1 焦化废水水质分析
  • 2.2 高效降解菌底物的确定
  • 2.3 本章小结
  • 3. 多环芳烃的高效降解菌的筛选
  • 3.1 实验材料及设备
  • 3.2 实验方法
  • 3.3 实验结果
  • 3.4 本章小结
  • 4. 高效降解菌株N-3,K-4 的特性及鉴定
  • 4.1 实验材料和方法
  • 4.2 实验方法
  • 4.3 试验结果和讨论
  • 4.4 本章小结
  • 5. 生物活性炭深度处理焦化废水的研究
  • 5.1 实验对象
  • 5.2 实验材料和方法
  • 5.3 实验结果与讨论
  • 5.4 本章小结
  • 6. 生物活性炭连续处理模拟废水的研究
  • 6.1 实验材料和方法
  • 6.2 实验结果与讨论
  • 6.3 本章小结
  • 7. 结论和展望
  • 7.1 试验结论
  • 7.2 试验展望
  • 参考文献
  • 致谢
  • 攻读硕士学位期间发表的论文
  • 附录
  • 相关论文文献

    • [1].不同化学氧化剂对土壤中多环芳烃的降解效果[J]. 浙江大学学报(工学版) 2019(12)
    • [2].烧烤肉中多环芳烃的检测方法及控制措施[J]. 中国食物与营养 2019(11)
    • [3].气相色谱质谱联用法测定土壤中的多环芳烃[J]. 广州化工 2020(06)
    • [4].多环芳烃源解析方法对比[J]. 吉林建筑大学学报 2020(01)
    • [5].利用催化剂装填级配技术降低柴油多环芳烃含量[J]. 天津化工 2020(02)
    • [6].紫外脉冲激光作用下土壤中多环芳烃的分解与荧光发射特性(英文)[J]. 光谱学与光谱分析 2020(07)
    • [7].溶解性腐殖酸与多环芳烃相互作用机理[J]. 生态学杂志 2020(07)
    • [8].气相色谱-质谱法快速检测土壤中16种多环芳烃[J]. 环境化学 2020(08)
    • [9].气质联用法同时测定烟熏烘烤食品中16种多环芳烃[J]. 中国预防医学杂志 2020(04)
    • [10].净化液处理对豇豆采后多环芳烃(PAHs)的净化效果研究[J]. 中国农学通报 2020(29)
    • [11].土壤中多环芳烃的提取与净化方法研究现状[J]. 农业与技术 2019(09)
    • [12].消费品中多环芳烃来源概述[J]. 化纤与纺织技术 2017(04)
    • [13].气相色谱质谱联用仪测定土壤中16组分多环芳烃[J]. 化工设计通讯 2017(12)
    • [14].气相色谱-质谱法测定含油污泥中16种多环芳烃[J]. 分析科学学报 2017(01)
    • [15].环境空气中多环芳烃衍生物的研究进展[J]. 黑龙江环境通报 2016(03)
    • [16].中国年燃煤会释放5亿t多环芳烃?[J]. 环境污染与防治 2017(02)
    • [17].有机碳含量对多环芳烃在土壤剖面残留及迁移的影响[J]. 环境科学 2017(09)
    • [18].支持向量机对多环芳烃毒性的定量构效预测[J]. 安全与环境学报 2017(04)
    • [19].气相色谱-质谱联用测定炭黑中的多环芳烃[J]. 橡胶工业 2017(11)
    • [20].液相色谱法测定水中16种多环芳烃的方法优化[J]. 食品界 2019(02)
    • [21].索氏提取法提取大气颗粒物PM2.5中多环芳烃[J]. 城市地理 2017(10)
    • [22].危险的多环芳烃[J]. 百科知识 2013(19)
    • [23].五车企陷多环芳烃风波[J]. 消费者报道 2013(04)
    • [24].加速溶剂萃取-旋蒸定容-高效液相色谱法检测土壤中16种多环芳烃[J]. 环境化学 2019(12)
    • [25].多环芳烃在不同环境介质中对翅碱蓬发芽率影响研究[J]. 中国野生植物资源 2020(03)
    • [26].扬州市不同功能区表层土壤中多环芳烃的含量、来源及其生态风险[J]. 环境科学 2020(04)
    • [27].长江下游支流水体中多环芳烃的分布及生态风险评估[J]. 环境科学 2020(05)
    • [28].土壤中多环芳烃定量检测的前处理方法比较研究[J]. 实验室科学 2020(03)
    • [29].黄岩区表层土壤中多环芳烃含量分布及源解析[J]. 浙江农业科学 2019(01)
    • [30].环境样品中多环芳烃的检测技术研究进展[J]. 广州化工 2018(24)

    标签:;  ;  ;  ;  ;  

    降解多环芳烃高效菌及生物活性炭的研制
    下载Doc文档

    猜你喜欢