一种基于状态转换的微网协调控制策略研究

一种基于状态转换的微网协调控制策略研究

论文摘要

本论文受重庆市自然科学基金(CSTC2009BB6190)和输配电装备及系统安全与新技术国家重点实验室自主研究项目(2007DA10512709208)的资助。微网是由分布式电源(Distributed Generation, DG)、本地负荷和储能装置组成的独立可控系统。微网中的DG按输出功率调节特性可分为间歇性电源和连续性电源两类,间歇性电源的输出功率受天气等自然条件的影响较大,出力具有明显的波动性和间歇性,连续性电源具有相对可靠的一次能源供给和连续的出力调节能力,为满足本地用户的不同用电需求和微网运行状态的无缝平滑转换,须在微网中配置适当的储能装置。当微网的网络结构发生变化时,如何对微网中的DG、储能装置、本地负荷、开关进行有效的协调控制,以保证微网在不同运行状态下都尽可能满足本地用户的要求,是微网安全稳定和可靠运行的关键。因此研究多种能源混合微网的协调控制策略对于微网应用和研究具有重要意义。本文针对包含多种连续性和间歇性DG、敏感负荷以及储能装置的分层控制结构的微网,提出了一种基于状态转换的协调控制策略。①根据微网中微源的功率调节特性将微源分为间歇性电源、连续性电源、储能装置,建立各类微源的仿真模型并研究了微源的动态响应特性。为保证可再生能源的最大利用率,间歇性电源采用最大功率跟踪控制方式(Maximum Power Point Tracking, MPPT),不参与微网系统的有功功率调节。连续性电源是微网的主要能源形式,具有充足的一次能源和有功调节能力,但微型燃气轮机和燃料电池等连续性电源有功调节速度较慢,不能响应快速的负荷变化,须配合储能装置以保证微网在各种运行状态的可靠供电。②研究了两级分层控制结构微网的中央控制器(MicroGrid Central Controller, MGCC)和本地控制器,其上层为MGCC利用所采集的负荷信息、DG和储能装置燃料情况、运行状态以及外部电力市场信息,为连续性DG提供有功和无功出力设定值,以达到最优功率分配目的,同时还实现微网运行状态转换;底层包括微源控制器(Microsource Controller, MC)和负荷控制器(Load Controller, LC)为执行MGCC具体操作指令的本地控制单元。分析了微网中电力电子接口微源本地控制器的三种控制方式,包括恒功率控制(PQ control)、下垂控制(Droop control)和恒压恒频控制(V/f control);阐述了中央控制器的结构和功能,研究了中央控制器的功率管理单元、同步并网单元和运行状态管理单元。③提出一种基于状态转换的微网协调控制策略。根据本地负荷的用电需求对微网可能出现的运行状态进行简化组合,得到微网中允许出现的有效运行状态。通过将微网当前运行状态和触发事件作为中央控制器的输入变量,各可控元件的控制方式作为输出变量,制定微网运行状态转换方案。为保证敏感负荷的不间断供电,同时考虑微网所有运行状态下系统频率无差调节和储能装置的容量限制,提出了本文定义运行状态下各元件相应的控制方式和触发事件。④利用PSCAD/EMTDC软件仿真分析了典型状态转换过程中的动态响应特性,验证了所设计的微网协调控制策略的可行性。针对本文提出的微网状态转换控制策略,对微网从连续性连状态转换到连续性支持状态、综合支持状态转换到综合连接状态和综合稳定状态转换到间歇性稳定状态等三种典型状态转换过程进行仿真分析。仿真结果表明所提出的协调控制策略能够实现微网状态平滑转换和频率无差调节,保证了敏感负荷的不间断供电和供电质量。同时,也尽可能得延长了储能装置的使用时间。

论文目录

  • 中文摘要
  • 英文摘要
  • 1 绪论
  • 1.1 课题研究背景及意义
  • 1.2 国内外研究现状
  • 1.2.1 微网定义
  • 1.2.2 典型微网结构
  • 1.2.3 微网特点
  • 1.2.4 微网控制策略
  • 1.3 微网分层控制所存在的问题
  • 1.4 本文所作的工作
  • 2 分布式电源分类及典型模型
  • 2.1 分布式电源分类
  • 2.2 间歇性电源及风力发电系统模型
  • 2.3 连续性电源及典型模型
  • 2.3.1 微型燃气轮机模型
  • 2.3.2 燃料电池模型
  • 2.4 储能装置及蓄电池模型
  • 2.5 小结
  • 3 微网分层控制结构及控制方式
  • 3.1 引言
  • 3.2 微网分层控制结构
  • 3.3 逆变电源本地控制器
  • 3.3.1 逆变器结构和SPWM 调制原理
  • 3.3.2 V/f 控制方式
  • 3.3.3 Droop 控制方式
  • 3.3.4 PQ 控制方式
  • 3.4 微网中央控制器
  • 3.4.1 功率管理单元
  • 3.4.2 同步并网单元
  • 3.4.3 运行状态管理单元
  • 3.5 小结
  • 4 基于状态转换的微网协调控制策略
  • 4.1 引言
  • 4.2 微网运行状态简化和控制
  • 4.2.1 微网运行状态定义
  • 4.2.2 微网运行状态简化
  • 4.2.3 各状态下微网元件的控制方式
  • 4.3 微网运行状态转换
  • 4.3.1 运行状态转换定义
  • 4.3.2 触发事件
  • 4.3.3 运行状态管理
  • 4.4 小结
  • 5 仿真分析
  • 5.1 引言
  • 5.2 含多种微源微网PSCAD/EMTDC 建模
  • 5.3 仿真分析
  • 5.3.1 连续性连接状态转换到连续性支持状态
  • 5.3.2 综合支持状态转换到综合连接状态
  • 5.3.3 综合稳定状态转换到间歇性稳定状态
  • 5.4 小结
  • 6 结论与展望
  • 6.1 结论
  • 6.2 展望
  • 致谢
  • 参考文献
  • 附录
  • A.微网系统仿真参数表
  • B.作者在攻读硕士学位期间发表的论文目录
  • C.作者在攻读硕士学位期间参与的项目
  • 相关论文文献

    • [1].微电网协调控制策略研究[J]. 信息通信 2020(03)
    • [2].混合动力汽车协调控制策略构架[J]. 电子世界 2016(09)
    • [3].330MW供热机组协调控制策略研究与优化[J]. 东北电力技术 2016(04)
    • [4].多能互补新能源电站协调控制策略研究[J]. 电工电气 2020(09)
    • [5].永磁电机低电压穿越的协调控制策略研究[J]. 分布式能源 2019(03)
    • [6].采煤机牵引速度协调控制策略研究[J]. 机械工程与自动化 2017(04)
    • [7].风储联合发电系统建模与协调控制策略研究[J]. 计算机仿真 2017(07)
    • [8].多端直流输电系统中直流电压协调控制策略研究[J]. 华东交通大学学报 2016(03)
    • [9].背靠背输电系统中柔性直流与常规直流的协调控制策略[J]. 南方能源建设 2016(02)
    • [10].一种实现优质电力园区分级供电的协调控制策略[J]. 浙江电力 2018(04)
    • [11].含压缩空气储能的光储系统虚拟惯性协调控制策略[J]. 华北电力大学学报(自然科学版) 2020(04)
    • [12].支撑电网黑启动的风光储新能源电站协调控制策略[J]. 电力建设 2020(09)
    • [13].百万级超超临界火电机组新型协调控制策略分析[J]. 发电与空调 2017(02)
    • [14].高压共轨燃油喷射系统多次喷射协调控制策略研究[J]. 内燃机工程 2013(04)
    • [15].海上风电场与柔性直流输电系统的新型协调控制策略[J]. 电力系统自动化 2016(21)
    • [16].微电网的能量协调控制策略研究[J]. 电子世界 2014(06)
    • [17].燃料电池集成供电系统协调控制策略研究[J]. 电力电容器与无功补偿 2019(06)
    • [18].考虑海缆充电功率的海上风电场无功补偿协调控制策略研究[J]. 电机与控制应用 2016(08)
    • [19].基于混沌神经网络的混合动力汽车状态切换协调控制策略研究[J]. 汽车技术 2015(10)
    • [20].故障下含间歇性电源的配电网孤岛协调控制策略[J]. 电力系统及其自动化学报 2016(S1)
    • [21].试析自备电厂协调控制策略分析优化[J]. 通讯世界 2017(09)
    • [22].基于多电源联合系统的大规模风光消纳协调控制策略[J]. 智能电网 2014(02)
    • [23].火力发电机组协调控制策略探讨[J]. 安徽电力 2012(01)
    • [24].交流伺服系统多模协调控制策略研究[J]. 齐齐哈尔大学学报(自然科学版) 2009(04)
    • [25].柴储混合电力系统的频率协调控制策略[J]. 上海电力学院学报 2018(06)
    • [26].W火焰直流炉协调控制策略及工程应用优化[J]. 中国电力 2019(06)
    • [27].一种适用于黑启动的光储联合发电系统协调控制策略[J]. 电网技术 2017(09)
    • [28].直驱永磁风力发电机组低电压穿越的协调控制策略[J]. 电网技术 2013(05)
    • [29].300MW机组协调控制策略优化[J]. 浙江电力 2012(05)
    • [30].分布式发电电压协调控制策略研究[J]. 南京师范大学学报(工程技术版) 2016(04)

    标签:;  ;  ;  ;  ;  

    一种基于状态转换的微网协调控制策略研究
    下载Doc文档

    猜你喜欢