艾晶:多孔磷化铁与磷化钴电催化剂的制备及其析氢性能研究论文

艾晶:多孔磷化铁与磷化钴电催化剂的制备及其析氢性能研究论文

本文主要研究内容

作者艾晶(2019)在《多孔磷化铁与磷化钴电催化剂的制备及其析氢性能研究》一文中研究指出:随着能源危机和环境污染问题的日益严重,发展高效、清洁的新能源已成为当前研究的焦点。氢气因其能量密度高和清洁可再生,现已成为最有希望代替化石能源的新能源载体。在众多制氢技术中,电解水是最高效和环保的制取氢气技术。在电解水过程中,阴极在催化剂作用下发生析氢反应(HER)制取高纯氢气。Pt族贵金属因具有低的过电位和快速的反应动力学,是目前已知催化活性最高的HER催化剂。然而,Pt族贵金属昂贵的价格严重地限制了电解水制氢技术的大规模应用。因此,寻求高效、廉价的非贵金属析氢催化剂成为当前研究的热点话题。因价格低廉且具有较高的本征催化活性,过渡金属磷化物成为非贵金属电催化剂的典型代表。本文主要通过调控催化剂的活性位点数量和导电性两个途径优化过渡金属磷化物的析氢催化活性。以多孔结构的可控制备为切入点,分别构造了三维大孔磷化铁自支撑电极和介孔磷化钴自支撑电极作为高效的电解水析氢催化剂。本论文的具体研究内容包括:首先,结合自牺牲模板法和低温磷化法在碳布基底上构造了三维有序大孔磷化铁自支撑结构(3DOM-FeP/CC)。3DOM-FeP/CC具有互相连通的大孔孔道,孔径范围为100300 nm,孔壁厚度约为50 nm。所制备的自支撑电极兼具三维有序大孔结构和导电基底的优点。其中三维有序大孔结构可提供大量的可利用的活性位点、丰富的传质通道和快速的电子转移。同时,导电基底可以极大地提升电极的导电性。因此,3DOM-FeP/CC自支撑电极在酸性条件展示出优异的析氢性能和长时间的稳定性,实现10 mA cm-2和50 mA cm-2的电流密度所需过电位为68 mV和158 mV,Tafel斜率为42 mV dec-1。此外,制备了介孔磷化钴自支撑电极(meso-CoP/CC)并研究其析氢催化性能。利用ZnCl2作为盐模板在钴前驱体中构造介孔,再经过低温磷化反应得到meso-CoP/CC。所合成的meso-CoP/CC中含有222 nm的介孔,比表面积为38.65m2/g。此结构不仅具有介孔结构的大比表面积,又兼具导电基底的高导电性,能够充分发挥过渡金属磷化物、介孔、导电基底三者的电化学协同作用,从而有效地提升了其催化活性。因此,meso-CoP/CC展示出了高的析氢催化活性和良好的电化学稳定性。在酸、碱条件下,meso-CoP/CC自支撑电极实现10 mA cm-2的电流密度所需的过电位和Tafel斜率分别为102和118 mV,55和74 mV dec-1。

Abstract

sui zhao neng yuan wei ji he huan jing wu ran wen ti de ri yi yan chong ,fa zhan gao xiao 、qing jie de xin neng yuan yi cheng wei dang qian yan jiu de jiao dian 。qing qi yin ji neng liang mi du gao he qing jie ke zai sheng ,xian yi cheng wei zui you xi wang dai ti hua dan neng yuan de xin neng yuan zai ti 。zai zhong duo zhi qing ji shu zhong ,dian jie shui shi zui gao xiao he huan bao de zhi qu qing qi ji shu 。zai dian jie shui guo cheng zhong ,yin ji zai cui hua ji zuo yong xia fa sheng xi qing fan ying (HER)zhi qu gao chun qing qi 。Ptzu gui jin shu yin ju you di de guo dian wei he kuai su de fan ying dong li xue ,shi mu qian yi zhi cui hua huo xing zui gao de HERcui hua ji 。ran er ,Ptzu gui jin shu ang gui de jia ge yan chong de xian zhi le dian jie shui zhi qing ji shu de da gui mo ying yong 。yin ci ,xun qiu gao xiao 、lian jia de fei gui jin shu xi qing cui hua ji cheng wei dang qian yan jiu de re dian hua ti 。yin jia ge di lian ju ju you jiao gao de ben zheng cui hua huo xing ,guo du jin shu lin hua wu cheng wei fei gui jin shu dian cui hua ji de dian xing dai biao 。ben wen zhu yao tong guo diao kong cui hua ji de huo xing wei dian shu liang he dao dian xing liang ge tu jing you hua guo du jin shu lin hua wu de xi qing cui hua huo xing 。yi duo kong jie gou de ke kong zhi bei wei qie ru dian ,fen bie gou zao le san wei da kong lin hua tie zi zhi cheng dian ji he jie kong lin hua gu zi zhi cheng dian ji zuo wei gao xiao de dian jie shui xi qing cui hua ji 。ben lun wen de ju ti yan jiu nei rong bao gua :shou xian ,jie ge zi xi sheng mo ban fa he di wen lin hua fa zai tan bu ji de shang gou zao le san wei you xu da kong lin hua tie zi zhi cheng jie gou (3DOM-FeP/CC)。3DOM-FeP/CCju you hu xiang lian tong de da kong kong dao ,kong jing fan wei wei 100300 nm,kong bi hou du yao wei 50 nm。suo zhi bei de zi zhi cheng dian ji jian ju san wei you xu da kong jie gou he dao dian ji de de you dian 。ji zhong san wei you xu da kong jie gou ke di gong da liang de ke li yong de huo xing wei dian 、feng fu de chuan zhi tong dao he kuai su de dian zi zhuai yi 。tong shi ,dao dian ji de ke yi ji da de di sheng dian ji de dao dian xing 。yin ci ,3DOM-FeP/CCzi zhi cheng dian ji zai suan xing tiao jian zhan shi chu you yi de xi qing xing neng he chang shi jian de wen ding xing ,shi xian 10 mA cm-2he 50 mA cm-2de dian liu mi du suo xu guo dian wei wei 68 mVhe 158 mV,Tafelxie lv wei 42 mV dec-1。ci wai ,zhi bei le jie kong lin hua gu zi zhi cheng dian ji (meso-CoP/CC)bing yan jiu ji xi qing cui hua xing neng 。li yong ZnCl2zuo wei yan mo ban zai gu qian qu ti zhong gou zao jie kong ,zai jing guo di wen lin hua fan ying de dao meso-CoP/CC。suo ge cheng de meso-CoP/CCzhong han you 222 nmde jie kong ,bi biao mian ji wei 38.65m2/g。ci jie gou bu jin ju you jie kong jie gou de da bi biao mian ji ,you jian ju dao dian ji de de gao dao dian xing ,neng gou chong fen fa hui guo du jin shu lin hua wu 、jie kong 、dao dian ji de san zhe de dian hua xue xie tong zuo yong ,cong er you xiao de di sheng le ji cui hua huo xing 。yin ci ,meso-CoP/CCzhan shi chu le gao de xi qing cui hua huo xing he liang hao de dian hua xue wen ding xing 。zai suan 、jian tiao jian xia ,meso-CoP/CCzi zhi cheng dian ji shi xian 10 mA cm-2de dian liu mi du suo xu de guo dian wei he Tafelxie lv fen bie wei 102he 118 mV,55he 74 mV dec-1。

论文参考文献

  • [1].铜基MOF材料及其衍生物的电催化性能研究[D]. 何定红.合肥工业大学2019
  • [2].二硫化钼基复合催化剂析氢电极的构筑及其性能研究[D]. 李培真.电子科技大学2019
  • [3].电沉积制备镍基电极及其催化析氢性能[D]. 齐海东.华北理工大学2019
  • [4].多孔镍基复合电极材料的制备及催化性能研究[D]. 卢帅.华北理工大学2019
  • [5].基于离子液体前驱体制备的电解水析氢催化剂及其催化行为研究[D]. 唐道梅.西南大学2019
  • [6].二氧化钛基电催化剂的制备及其析氢性能研究[D]. 许银霞.河南大学2019
  • [7].镍基硫属化合物自支撑纳米催化电极制备与析氢性能研究[D]. 郭栋.长安大学2019
  • [8].过渡金属硫属化合物三维纳米阵列电极的可控构筑及电催化析氢性能研究[D]. 张阳阳.北京交通大学2019
  • [9].磁控溅射法制备二元金属复合物催化剂及电化学析氢活性研究[D]. 袁敏.武汉轻工大学2018
  • [10].Co2+/Co3+表面修饰Ta3N5基纳米复合材料的制备及光解水析氢性能[D]. 李雪松.哈尔滨师范大学2019
  • 读者推荐
  • [1].MOFs基钴磷化物的制备及其电化学性能研究[D]. 王伟伟.新疆大学2019
  • [2].氮/磷掺杂的碳负载磷化钴电催化剂的合成及性能研究[D]. 武嘉东.天津理工大学2019
  • [3].电化学还原硫制备金属硫化物及其析氢性能的研究[D]. 李青.太原理工大学2019
  • [4].钴基复合电极的制备及其析氢性能研究[D]. 韦勇.武汉科技大学2019
  • [5].复合金属氧化物/碳纳米纤维的制备及电催化析氢性能研究[D]. 朱梦璇.长春工业大学2019
  • [6].纳米结构钴基电催化材料的制备及析氢性能研究[D]. 刘欢欢.西南科技大学2019
  • [7].通过复合与掺杂策略提升二硫化钼电催化剂碱性析氢性能的研究[D]. 江建武.吉林大学2019
  • [8].过渡金属磷化物的制备及其电催化析氢性能研究[D]. 杨晨.中国矿业大学2019
  • [9].磷化钼基催化剂的制备及电催化析氢性能研究[D]. 刘萍.青岛科技大学2019
  • [10].基于过渡金属化合物的制备及其催化析氢性能的研究[D]. 罗佳娴.暨南大学2018
  • 论文详细介绍

    论文作者分别是来自吉林大学的艾晶,发表于刊物吉林大学2019-06-25论文,是一篇关于水电解论文,大孔论文,析氢反应论文,介孔论文,过渡金属磷化物论文,吉林大学2019-06-25论文的文章。本文可供学术参考使用,各位学者可以免费参考阅读下载,文章观点不代表本站观点,资料来自吉林大学2019-06-25论文网站,若本站收录的文献无意侵犯了您的著作版权,请联系我们删除。

    标签:;  ;  ;  ;  ;  ;  

    艾晶:多孔磷化铁与磷化钴电催化剂的制备及其析氢性能研究论文
    下载Doc文档

    猜你喜欢