本文主要研究内容
作者(2019)在《First-principles kinetics study of carbon monoxide promoted Ostwald ripening of Au particles on FeO/Pt(111)》一文中研究指出:The dynamic and kinetic evolution of supported metal particles in the presence of reactants is decisive in shaping the nature of the catalytic active sites and the deactivation process. Ostwald ripening of FeO/Pt(111) supported Au particles in the presence of carbon monoxide is addressed here by firstprinciples kinetics. It is found that CO stabilizes the ripening monomer(Au atom) by forming favorable Au carbonyls with lower total activation energy, and corresponding phase diagram at wide range of temperature and CO pressures is constructed. Evolution of particle number, dispersion and particle size distribution of supported Au particles are explored. Great influence of CO promotion on ripening kinetics is revealed and explored in details, and mbar range of CO can lower the onset temperature of ripening by a few hundred kelvins. The present work reveals the crucial role of the metal-reactant complexes formed under reaction conditions on ripening of metal catalysts.
Abstract
The dynamic and kinetic evolution of supported metal particles in the presence of reactants is decisive in shaping the nature of the catalytic active sites and the deactivation process. Ostwald ripening of FeO/Pt(111) supported Au particles in the presence of carbon monoxide is addressed here by firstprinciples kinetics. It is found that CO stabilizes the ripening monomer(Au atom) by forming favorable Au carbonyls with lower total activation energy, and corresponding phase diagram at wide range of temperature and CO pressures is constructed. Evolution of particle number, dispersion and particle size distribution of supported Au particles are explored. Great influence of CO promotion on ripening kinetics is revealed and explored in details, and mbar range of CO can lower the onset temperature of ripening by a few hundred kelvins. The present work reveals the crucial role of the metal-reactant complexes formed under reaction conditions on ripening of metal catalysts.
论文参考文献
论文详细介绍
论文作者分别是来自Journal of Energy Chemistry的,发表于刊物Journal of Energy Chemistry2019年03期论文,是一篇关于,Journal of Energy Chemistry2019年03期论文的文章。本文可供学术参考使用,各位学者可以免费参考阅读下载,文章观点不代表本站观点,资料来自Journal of Energy Chemistry2019年03期论文网站,若本站收录的文献无意侵犯了您的著作版权,请联系我们删除。