聚苯胺—铁氰化镍纳米复合材料的可控制备与电化学性能

聚苯胺—铁氰化镍纳米复合材料的可控制备与电化学性能

论文摘要

有机-无机纳米复合材料能够兼具有机材料和无机材料的优异性能,产生协同优化效应甚至新的功能,在材料科学与器件制造领域日益受到人们的关注。在众多有机-无机复合材料中,聚苯胺(PANI)与铁氰化镍(NiHCF)的复合有利于提高材料的整体性能,在超级电容器(ESC)、电催化与生物传感器等方面有广泛的研究前景。我们的工作主要包括下面两个方面的内容:首先,我们采用循环伏安一步共聚法在碳纳米管修饰的铂基体上制备了电活性碳纳米管/聚苯胺/铁氰化镍(CNTs/PANI/NiHCF)复合膜。用傅立叶变换红外光谱(FT-IR)、X射线能谱仪(EDS)和扫描电镜(SEM)研究了复合膜组成及其表面形貌,并用循环伏安(CV)、恒电流充放电和电化学阻抗(EIS)等测试了复合膜的循环稳定性与电化学容量性能。研究表明:复合膜为三维多孔有序的网络状结构,PANI和NiHCF以纳米颗粒形式存在并沿CNTs均匀分布;在电流密度为2 mA/cm2时,CNTs/PANI/NiHCF复合膜的比容量高达262.28 F/g,比能量为29.51 Wh/kg,电流密度为10 mA/cm2时比功率可达10228.61 W/kg;在2000次循环充放电过程中,复合膜的电容量仅衰减19.92%,电荷充放电效率一直保持在99%以上。再次,通过调节制备液中苯胺单体浓度对其粒径进行有效控制,合成了三种不同尺寸的PANI-NiHCF纳米复合颗粒。初步探讨纳米颗粒的形成机理并研究其组成/结构-性能的关系;通过X射线能谱仪、扫描电镜与傅立叶变换红外光谱研究纳米颗粒的组成及其微观结构;用循环伏安、电化学阻抗等技术测试纳米颗粒的电荷传递动力学与电化学性能。实验表明:PANI-NiHCF纳米颗粒均呈立方体结构,分散性较好;PANI-NiHCF-I具有较好的电荷传递动力学特征,其电荷传递系数α为0.467;经1000次循环之后,PANI-NiHCF-II的离子交换容量仅衰减8.7%,具有优异的电化学稳定性;与PANI-NiHCF-III不同,PANI-NiHCF-I与PANI-NiHCF-II均可利用电控离子交换技术(ESIX)对碱金属离子进行分析与检测。

论文目录

  • 摘要
  • ABSTRACT
  • 第一章 文献综述
  • 1.1 有机-无机杂化材料
  • 1.1.1 有机-无机杂化材料制备方法
  • 1.1.2 有机-无机杂化材料研究现状
  • 1.2 超级电容器
  • 1.2.1 超级电容器的工作原理
  • 1.2.2 超级电容器性能
  • 1.2.3 超级电容器分类
  • 1.2.4 超级电容器的应用与展望
  • 1.3 纳米材料
  • 1.3.1 纳米材料的特性
  • 1.3.2 有机-无机纳米复合材料
  • 1.3.3 有机-无机纳米材料展望
  • 1.4 本研究课题的目的与意义
  • 参考文献
  • 第二章 实验部分
  • 2.1 试剂与仪器
  • 2.2 实验条件
  • 2.3 有机无机复合材料的制备
  • 2.3.1 电极的预处理
  • 2.3.2 聚苯胺/铁氰化镍复合材料的制备
  • 2.4 实验分析测试方法
  • 2.4.1 循环伏安法
  • 2.4.2 电化学交流阻抗
  • 2.4.3 X 射线能谱分析
  • 2.4.4 傅立叶变换红外光谱分析
  • 第三章 碳纳米管/聚苯胺/铁氰化镍复合膜的电化学共聚制备与电容性能
  • 3.1 引言
  • 3.2 实验部分
  • 3.2.1 仪器与试剂
  • 3.2.2 电极预处理
  • 3.2.3 复合膜的制备
  • 3.2.4 复合膜的性能实验
  • 3.3 结果与讨论
  • 3.3.1 CNTs/PANI/NiHCF 复合膜的共聚制备
  • 3.3.2 CNTs/PANI/NiHCF 复合膜的组成与微观形貌分析
  • 3.3.3 循环伏安测试
  • 3.3.4 恒电流充放电测试
  • 3.3.5 循环性能测试
  • 3.3.6 电化学阻抗测试
  • 3.4 结论
  • 参考文献
  • 第四章 不同尺寸聚苯胺-铁氰化镍纳米复合颗粒的可控制备及其电化学性能
  • 4.1 引言
  • 4.2 实验部分
  • 4.2.1 仪器与试剂
  • 4.2.2 电极预处理
  • 4.2.3 PANI-NiHCF 纳米复合颗粒的制备
  • 4.3 结果与讨论
  • 4.3.1 PANI-NiHCF 纳米复合颗粒的制备、形貌与组成
  • 4.3.2 PANI-NiHCF 纳米复合颗粒的微观形貌与组成
  • 4.3.3 PANI-NiHCF 纳米复合颗粒的离子-质子传递机理
  • 4.3.4 循环伏安测试
  • 4.3.5 循环寿命测试
  • 4.3.6 电化学阻抗测试
  • 4.3.7 碱金属离子溶液中的循环伏安特性分析
  • 4.4 结论
  • 参考文献
  • 第五章 结论与展望
  • 5.1 结论
  • 5.2 展望
  • 致谢
  • 攻读硕士期间发表的学术论文
  • 相关论文文献

    • [1].ZnO@MOF@PANI core-shell nanoarrays on carbon cloth for high-performance supercapacitor electrodes[J]. Journal of Energy Chemistry 2019(08)
    • [2].Thermal conductivity of PVDF/PANI-nanofiber composite membrane aligned in an electric field[J]. Chinese Journal of Chemical Engineering 2018(05)
    • [3].Thermal Characteristics of PVA-PANI-ZnS Nanocomposite Film Synthesized by Gamma Irradiation Method[J]. Chinese Physics Letters 2018(11)
    • [4].Synthesis and Enhanced Electrochemical Activity of Ag-Pt Bimetallic Nanoparticles Decorated MWCNTs/PANI Nanocomposites[J]. Journal of Wuhan University of Technology(Materials Science) 2018(05)
    • [5].Immobilization of PANI on Mesoporous Carbon:Preparation and Supercapacitor Performance[J]. Transactions of Nanjing University of Aeronautics and Astronautics 2018(04)
    • [6].A Self-Powered Breath Analyzer Based on PANI/PVDF Piezo-Gas-Sensing Arrays for Potential Diagnostics Application[J]. Nano-Micro Letters 2018(04)
    • [7].NiCo_2O_4 decorated PANI–CNTs composites as supercapacitive electrode materials[J]. Journal of Energy Chemistry 2017(01)
    • [8].Electrical Conductivity and pH Sensitivity of Ordered Porous Gel Acrylate Polymer Membrane with Nano-PANI Doping[J]. Journal of Harbin Institute of Technology 2017(02)
    • [9].接枝聚合法制备PANI/CeO_2-APTMS复合材料及其电化学性能[J]. 高分子材料科学与工程 2017(07)
    • [10].花状CuS/PANI复合材料的制备及其电磁屏蔽性能研究[J]. 现代化工 2017(11)
    • [11].MnFe_2O_4@PANI@Ag Heterogeneous Nanocatalyst for Degradation of Industrial Aqueous Organic Pollutants[J]. Journal of Materials Science & Technology 2016(02)
    • [12].PANI导电水凝胶的制备及其进展[J]. 高分子通报 2020(06)
    • [13].原位聚合法制备PANI/RGO导电复合材料的性能[J]. 工程塑料应用 2018(03)
    • [14].硅烷偶联剂预处理PANI对水性涂料性能的影响[J]. 精细化工 2017(11)
    • [15].Synthesis and supercapacitor characteristics of PANI/CNTs composites[J]. Chinese Science Bulletin 2010(11)
    • [16].Preparation of Surfactants Directed PANI/In_2O_3 Nanocomposite Thin Films and Its NH_3-Sensing Properties[J]. Journal of Electronic Science and Technology 2010(02)
    • [17].Preparation,Characterization and Comparative NH_3-sensing Characteristic Studies of PANI/inorganic Oxides Nanocomposite Thin Films[J]. Journal of Materials Science & Technology 2010(07)
    • [18].Chlorine gas sensors using hybrid organic semiconductors of PANI/ZnPcCl_(16)[J]. 半导体学报 2010(08)
    • [19].Investigation of Novel Short Fiber-like Polyaniline/Cerium Nitrate Composite[J]. Journal of Wuhan University of Technology(Materials Science) 2019(01)
    • [20].Nano-Au@PANI蛋黄空心结构电极材料的构筑及超级电容性能[J]. 材料导报 2018(01)
    • [21].PANI/MoS_2复合材料的制备及其电化学性能研究[J]. 当代化工 2018(05)
    • [22].双脉冲电镀制备PbO_2-PANI复合电极的研究[J]. 化工新型材料 2018(07)
    • [23].Two-dimensional polyaniline nanosheets via liquid-phase exfoliation[J]. Chinese Physics B 2017(04)
    • [24].Preparation and Antibacterial Activity of Three-component NiFe_2O_4@PANI@Ag Nanocomposite[J]. Journal of Materials Science & Technology 2014(07)
    • [25].PMOV_2/PANI/TiO_2复合材料的制备及光催化性能[J]. 化工新型材料 2012(12)
    • [26].Synthesis and characterization of conducting polyaniline nanocomposites containing ZnO nanorods[J]. Progress in Natural Science:Materials International 2012(04)
    • [27].PANI/Fe-杭锦2~#土催化剂对乙酸的光催化降解研究[J]. 内蒙古师范大学学报(自然科学汉文版) 2019(05)
    • [28].电场-抽滤法制备VACNTs/PANI复合膜及其热性能研究[J]. 广州化工 2018(15)
    • [29].Effect of CNTs and nano ZnO on physical and mechanical properties of polyaniline composites applicable in energy devices[J]. Progress in Natural Science:Materials International 2016(06)
    • [30].Ternary Fe_3O_4@PANI@Au nanocomposites as a magnetic catalyst for degradation of organic dyes[J]. Science China(Technological Sciences) 2017(05)

    标签:;  ;  ;  ;  ;  ;  

    聚苯胺—铁氰化镍纳米复合材料的可控制备与电化学性能
    下载Doc文档

    猜你喜欢